資源描述:
《Graphical Models》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學術(shù)論文-天天文庫。
1、GraphicalModelsJinlongWu&TiejunLiNov20081IntroductionJordan[3]presentesaveryconciseintroductiontoGraphicalModels(GMs):Graphicalmodelsareamarriagebetweenprobabilitytheoryandgraphtheory.Theyprovideanaturaltoolfordealingwithtwoproblemsthatoccurthroughoutapplied
2、mathematicsandengineering—uncer-taintyandcomplexity—andinparticulartheyareplayinganincreasinglyimportantroleinthedesignandanalysisofmachinelearningalgorithms.Fundamentaltotheideaofagraphicalmodelisthenotionofmodularity—acomplexsystemisbuiltbycombiningsimpler
3、parts.Probabilitytheoryprovidesthegluewherebythepartsarecombined,ensuringthatthesystemasawholeisconsistent,andprovidingwaystointerfacemodelstodata.Thegraphtheoreticsideofgraphicalmodelsprovidesbothanintuitivelyappeal-inginterfacebywhichhumanscanmodelhighly-i
4、nteractingsetsofvariablesaswellasadatastructurethatlendsitselfnaturallytothedesignofef?cientgeneral-purposealgorithms.Manyoftheclassicalmultivariateprobabilisticsystemsstudiedin?eldssuchasstatistics,systemsengineering,informationtheory,patternrecognitionands
5、tatisticalmechanicsarespecialcasesofthegeneralgraphicalmodelformalism—examplesincludemixturemodels,factoranalysis,hiddenMarkovmodels,Kalman?ltersandIsingmodels.Thegraphicalmodelframeworkprovidesawaytoviewallofthesesystemsasinstancesofacommonunderlyingformali
6、sm.Thisviewhasmanyadvantages—inparticular,specializedtechniquesthathavebeendevelopedinone?eldcanbetransferredbetweenresearchcommunitiesandexploitedmorewidely.Moreover,thegraphicalmodelformalismprovidesanaturalframeworkforthedesignofnewsystems.GMsareusuallydi
7、videdintotwotypes—undirectedanddirected.UndirectedGMsarealsocalledMarkovNetworksorMarkovRandomFields(MRFs),anddirectedGMsarealsoknownasBayesianNetworks(BNs),beliefnetworks,generativemodelsorcausalmodels.1.1DirectedGMs(BayesianNetworks)[4]InBayesianNetworks(B
8、Ns)eachvertexrepresentsarandomvariable,andanarcfromvertexXtovertexY(wealsosaidthatXisoneoftheparentsofY)meansXisoneofthereasonswhyYhappens,i.e.,XcausesY.HenceBNsareacyclic.BNsassumethatavariable