graphical causal models

graphical causal models

ID:7290607

大小:545.84 KB

頁數(shù):29頁

時(shí)間:2018-02-10

graphical causal models_第1頁
graphical causal models_第2頁
graphical causal models_第3頁
graphical causal models_第4頁
graphical causal models_第5頁
資源描述:

《graphical causal models》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。

1、Chapter13GraphicalCausalModelsFelixElwertAbstractThischapterdiscussestheuseofdirectedacyclicgraphs(DAGs)forcausalinferenceintheobservationalsocialsciences.ItfocusesonDAGs?mainuses,discussescentralprinciples,andgivesappliedexamples.DAGsarevisualrepresentationsofqualitat

2、ivecausalassumptions:Theyencoderesearchers?beliefsabouthowtheworldworks.Straightforwardrulesmapthesecausalassumptionsontotheassociationsandindependenciesinobservabledata.ThetwoprimaryusesofDAGsare(1)determiningtheidentiTabilityofcausaleffectsfromobserveddataand(2)deriv

3、ingthetestableimplicationsofacausalmodel.ConceptscoveredinthischapterincludeidentiTcation,d-separation,confounding,endogenousselection,andovercontrol.Illustrativeapplicationsthendemonstratethatconditioningonvariablesatanystageinacausalprocesscaninduceaswellasremovebias

4、,thatconfoundingisafundamentallycausalratherthananassociationalconcept,thatconventionalapproachestocausalmediationanalysisareoftenbiased,andthatcausalinferenceinsocialnetworksinherentlyfacesendogenousselectionbias.Thechapterdiscussesseveralgraphicalcriteriafortheidenti

5、Tcationofcausaleffectsofsingle,time-pointtreatments(includingthefamousbackdoorcriterion),aswellidentiTcationcriteriaformultiple,time-varyingtreatments.IntroductionVisualrepresentationsofcausalmodelshavealonghistoryinthesocialsciences,Trstgainingprominencewithpathdiagra

6、msforlinearstructuralequationmodelsinthe1960s(Blalock1964;Duncan1975).Sincethesebeginnings,methodologistsinvariousdisciplineshavemaderemarkableprogressindevelopingformaltheoriesforgraphicalcausalmodelsthatnotonlygeneralizethelinearpathdiagramsofyoreintoafullynonparamet

7、ricframeworkbutalsointegrategraphicalmodelswiththereigningpotentialoutcomesframeworkofcausalinference.Bestofall,methodologistshavedevelopedasystemthatisbothrigorousandeasytouse.Inrecentyears,graphicalcausalmodelshavebecomelargelysynonymouswithdirectedacyclicgraphs(DAGs

8、).Ontheirown,DAGsarejustmathematicalobjectsbuiltfromdotsandarrows.Withafewassumptions,however,DAGscanberigorouslyrela

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。