資源描述:
《高中數(shù)學第二章2.3.2離散型隨機變量的方差教案新人教B版選修》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、2.3.2離散型隨機變量的方差一、教學目標:1、知識與技能:了解離散型隨機變量的方差、標準差的意義,會根據(jù)離散型隨機變量的分布列求出方差或標準差。2、過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應(yīng)用上述公式計算有關(guān)隨機變量的方差。3、情感、態(tài)度與價值觀:承前啟后,感悟數(shù)學與生活的和諧之美,體現(xiàn)數(shù)學的文化功能與人文價值。三、教學方法:討論交流,探析歸納四、內(nèi)容分析:數(shù)學期望是離散型隨機變量的一個特征數(shù),它反映了離散型隨機變量取值的平均水平,表示了隨機變量在隨機實驗中取值的
2、平均值,所以又常稱為隨機變量的平均數(shù)、均值.今天,我們將對隨機變量取值的穩(wěn)定與波動、集中與離散的程度進行研究.其實在初中我們也對一組數(shù)據(jù)的波動情況作過研究,即研究過一組數(shù)據(jù)的方差.回顧一組數(shù)據(jù)的方差的概念:設(shè)在一組數(shù)據(jù),,…,中,各數(shù)據(jù)與它們的平均值得差的平方分別是,,…,,那么++…+叫做這組數(shù)據(jù)的方差五、教學過程:探析新課:1.方差:對于離散型隨機變量ξ,如果它所有可能取的值是,,…,,…,且取這些值的概率分別是,,…,,…,那么,=++…++…稱為隨機變量ξ的均方差,簡稱為方差,式中的是隨機變量ξ的期望.3.方差的性質(zhì):(1);
3、(2);(3)若ξ~B(n,p3),則np(1-p)4.其它:⑴隨機變量ξ的方差的定義與一組數(shù)據(jù)的方差的定義式是相同的;⑵隨機變量ξ的方差、標準差也是隨機變量ξ的特征數(shù),它們都反映了隨機變量取值的穩(wěn)定與波動、集中與離散的程度;⑶標準差與隨機變量本身有相同的單位,所以在實際問題中應(yīng)用更廣泛(三)、例題探析:例1、隨機拋擲一枚質(zhì)地均勻的骰子,求向上一面的點數(shù)的均值、方差和標準差.例2、有甲乙兩個單位都愿意聘用你,而你能獲得如下信息:甲單位不同職位月工資X1/元1200140016001800獲得相應(yīng)職位的概率P10.40.30.20.1乙
4、單位不同職位月工資X2/元1000140018002000獲得相應(yīng)職位的概率P20.40.30.20.1根據(jù)工資待遇的差異情況,你愿意選擇哪家單位?例3.甲、乙兩射手在同一條件下進行射擊,分布列如下:射手甲擊中環(huán)數(shù)8,9,10的概率分別為0.2,0.6,0.2;射手乙擊中環(huán)數(shù)8,9,10的概率分別為0.4,0.2,0.24用擊中環(huán)數(shù)的期望與方差比較兩名射手的射擊水平例4.A、B兩臺機床同時加工零件,每生產(chǎn)一批數(shù)量較大的產(chǎn)品時,出次品的概率如下表所示:A機床B機床次品數(shù)ξ10123次品數(shù)ξ10123概率P0.70.20.060.04概率
5、P0.80.060.040.10問哪一臺機床加工質(zhì)量較好(四)、課堂練習:1、設(shè)~B(n、p)且E=12D=4,求n、p2.設(shè)隨機變量ξ的分布列為ξ12…nP…3求Dξ機變量和,在和相等或很接近時,比較和,可以確定哪個隨機變量的性質(zhì)更適合生產(chǎn)生活實際,適合人們的需要3