資源描述:
《初中數(shù)學(xué)函數(shù)教學(xué)設(shè)計淺探》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。
1、初中數(shù)學(xué)函數(shù)教學(xué)設(shè)計淺探在初屮的數(shù)學(xué)教學(xué)過程屮,函數(shù)教學(xué)是比較難的章節(jié),我們該如何設(shè)計我們的教學(xué)過程呢?下面我談?wù)勗诮虒W(xué)設(shè)計方面一些方法和實踐。1注重“類比教學(xué)”不同的事物往往具有一些相同或相似的屬性,人們正是利用相似事物具冇的這種屬性,通過對i事物的認(rèn)識來認(rèn)識與它相似的另一事物,這種認(rèn)識事物的思維方法就是類比法,利用類比的思想進(jìn)行教學(xué)設(shè)計實施教學(xué),可稱為“類比教學(xué)”。在函數(shù)教學(xué)中,我們期望的是通過對前面知識學(xué)習(xí)方法的傳授,達(dá)到對后續(xù)知識的學(xué)習(xí)產(chǎn)生影響,使學(xué)生達(dá)到舉一反三,觸類旁通的H的,讓學(xué)生順利地由“學(xué)會”到“會學(xué)”,真正實現(xiàn)“教是為了不教”的目的。有經(jīng)驗的老師都會發(fā)現(xiàn),初屮學(xué)習(xí)
2、的正比例函數(shù)、一次函數(shù)、反比例函數(shù)、二次函數(shù)在概念的得來、圖象性質(zhì)的研究、及基木解題方法上都有著本質(zhì)上的相似。因此釆用類比的教學(xué)方法不但省時、省力,還有助于學(xué)生的理解和應(yīng)用,是一種既經(jīng)濟(jì)又實效的教學(xué)方法。下面我就舉例說明如何采用類比的方法實現(xiàn)函數(shù)的教學(xué)。首先是正比例函數(shù),它是一次函數(shù)特例,也是初中數(shù)學(xué)中的-種簡單最基木的函數(shù)。但是,我們有些教師卻因為正比例函數(shù)過于簡單,而輕視。匆匆給出概念,然后應(yīng)用。等到講到一次函數(shù)、反比例函數(shù)、二次函數(shù)時又感到力不從心,學(xué)生接受起來概念模糊,性質(zhì)混亂,解題方法不明確。造成這種困擾的原因是因為忽視了正比例函數(shù)的基礎(chǔ)作用,我們應(yīng)該借助正比例函數(shù)這個最簡
3、單的函數(shù)載體,把函數(shù)研究經(jīng)典流程完整呈現(xiàn),正所謂“麻雀雖小,五臟俱全”。再學(xué)習(xí)其他函數(shù)時,在此基礎(chǔ)上類比學(xué)習(xí),循序漸進(jìn),螺旋上升。例如:《正比例函數(shù)》教學(xué)流程。環(huán)節(jié)一:概念的建立。通過對問題的處理用函數(shù)y二200x來反映汽車的行程與時間的對應(yīng)規(guī)律引入新課。學(xué)生自覺思考教師提問,共同得出每個問題的函數(shù)關(guān)系式。引導(dǎo)學(xué)生觀察以上函數(shù)關(guān)系式的特點得出正比例函數(shù)的描述泄義及解析式特點。環(huán)節(jié)二:函數(shù)圖象。這個環(huán)節(jié)是教學(xué)的重點,由學(xué)生先動手按“列表一一描點一一連線”的過程畫函數(shù)y=2x和y=-2x的圖象,相互交流比較然后教師利用多媒體展示畫函數(shù)圖象的過程并通過比較使學(xué)生止確掌握畫函數(shù)圖象的方法。環(huán)
4、節(jié)三:探究函數(shù)性質(zhì)。讓學(xué)生觀察函數(shù)圖象并引導(dǎo)學(xué)生通過比較來歸納正比例函數(shù)的性質(zhì),這個環(huán)節(jié)是木課的難點,教師要引導(dǎo)學(xué)生從圖象的形狀,從左往右的升降情況,經(jīng)過的象限及自變量變化時函數(shù)值的變化規(guī)律。這兒個方面來歸納,最終得出正比例函數(shù)的性質(zhì)。環(huán)節(jié)四:概念的歸納。將觀察、探究出的函數(shù)圖象的特征、函數(shù)的性質(zhì)等做出系統(tǒng)的歸納。環(huán)節(jié)五:概念的應(yīng)用。這個環(huán)節(jié)主要加深學(xué)生對知識點的理解,突出待定系數(shù)法的解題方法。從這五個環(huán)節(jié)的設(shè)定上,大家不難看出,我們在研究一次函數(shù)、反比例函數(shù)、二次函數(shù)的過程也是經(jīng)歷這樣的五個環(huán)節(jié),所以用類比的教學(xué)方式是在降低學(xué)生的學(xué)習(xí)難度,卻能提高學(xué)習(xí)質(zhì)量,而且程度比較好的學(xué)生可以
5、嘗試自主學(xué)習(xí)一次函數(shù)、反比例函數(shù)、二次函數(shù)。歸納:函數(shù)探究的內(nèi)容與方法:研究的對象一一函數(shù)的圖象與性質(zhì);研究的方法——畫圖象、分析圖象、探究坐標(biāo)變化規(guī)律、歸納函數(shù)性質(zhì);關(guān)注的問題一一圖象的位置、發(fā)展趨勢、與坐標(biāo)軸的交點、函數(shù)的增減性……2注重“數(shù)形結(jié)合”的教學(xué)數(shù)形結(jié)合的思想方法是初屮數(shù)學(xué)屮一種垂要的思想方法。數(shù)學(xué)是研究現(xiàn)實世界數(shù)量關(guān)系和空間形式的科學(xué)。而數(shù)形結(jié)合就是通過數(shù)與形之間的對應(yīng)和轉(zhuǎn)化來解決數(shù)學(xué)問題。它包含以形助數(shù)和以數(shù)解形兩個方面,利用它可使復(fù)雜問題簡單化,抽象問題具體化,它兼有數(shù)的嚴(yán)謹(jǐn)與形的直觀之長。函數(shù)的三種表示方法:解析法、列表法、圖象法本身就體現(xiàn)著函數(shù)的“數(shù)形結(jié)合”。
6、函數(shù)圖象就是將變化抽彖的函數(shù)“拍照”下來研究的有效工具,函數(shù)教學(xué)離不開函數(shù)圖象的研究。在借助圖象研究函數(shù)的過程中,我們需要注意以下幾點原則:①讓學(xué)生經(jīng)歷繪制函數(shù)圖象的具體過程。首先,對于函數(shù)圖象的意義,只有學(xué)生在親身經(jīng)丿力了列表、描點、連線等繪制函數(shù)圖象的具體過程,才能知道函數(shù)圖象的由來,才能了解圖象上點的橫、縱坐標(biāo)與自變量值、函數(shù)值的對應(yīng)關(guān)系,為學(xué)生利用函數(shù)圖象數(shù)形結(jié)合研究函數(shù)性質(zhì)打好基礎(chǔ)。其次,對于具體的一次函數(shù)、反比例函數(shù)、二次函數(shù)的圖象的認(rèn)識,學(xué)生通過親身畫圖,自己發(fā)現(xiàn)函數(shù)圖象的形狀、變化趨勢,感悟不同函數(shù)圖象之間的關(guān)系,為發(fā)現(xiàn)函數(shù)圖象間的規(guī)律,探索函數(shù)的性質(zhì)做好準(zhǔn)備。②切莫
7、急于呈現(xiàn)畫函數(shù)圖象的簡單畫法。首先,在探索具體函數(shù)形狀時,不能取得點太少,否則學(xué)生無法發(fā)現(xiàn)點分布的規(guī)律,從而猜想出圖象的形狀;其次,教師過早強(qiáng)調(diào)圖象的簡單畫法,追求方法的“最優(yōu)化”,縮短了學(xué)生知識探索的經(jīng)歷過程。函數(shù)是一個整體,各個具體函數(shù)是函數(shù)的特例,研究方法應(yīng)是相同的,通過類比和數(shù)形結(jié)合的方法,對比性質(zhì)的差異性,將具休函數(shù)逐步納入到整個函數(shù)學(xué)習(xí)中去,這也符合教材設(shè)計的螺旋式上升的理念。這樣自然使二次函數(shù)變得學(xué)著不難,水到渠成。