資源描述:
《用轉(zhuǎn)化的策略解決問題的教學(xué)反思》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。
1、《解決問題的策略轉(zhuǎn)化》教學(xué)案例與反思三角鎮(zhèn)中心小學(xué)陳平芳“解決問題的策略”作為獨(dú)立單元模塊來教學(xué)是蘇教版教材的一大特色,其立足點(diǎn)在于幫助學(xué)生獲得一般的解決問題的策略,其長遠(yuǎn)的目標(biāo)在于全面提升學(xué)生解決問題的能力,發(fā)展學(xué)生的數(shù)學(xué)素養(yǎng)。轉(zhuǎn)化策略是一種最常用的策略,它與倒推、置換等相比應(yīng)用更為廣泛,遍及小學(xué)數(shù)學(xué)教學(xué)的各個(gè)領(lǐng)域。所以這部分內(nèi)容的教學(xué)不以學(xué)生能夠解決教材里的各個(gè)問題為目的,而在于學(xué)生對轉(zhuǎn)化策略的進(jìn)一步體驗(yàn)與主動(dòng)應(yīng)用,形成初步的轉(zhuǎn)化意識和能力,這對以后的學(xué)習(xí)與解決問題將會(huì)產(chǎn)生十分積極的作用。如何對眾多涉及轉(zhuǎn)化策略的問題進(jìn)行有序梳理,引導(dǎo)學(xué)生再現(xiàn)解決問題的過程、進(jìn)一步體驗(yàn)
2、思想方法,促進(jìn)轉(zhuǎn)化策略的形成是值得深入研究的問題。如何尊重學(xué)生的個(gè)體差異,使不同的學(xué)生得到不同收獲呢?因此,在設(shè)計(jì)這節(jié)課時(shí),深入鉆研教材,明確教材向我們提供的其實(shí)是一個(gè)線索而并非是教學(xué)的全部。因此,緊抓線索,按圖索驥,力求使教科書背后隱藏的意圖成為我們的追求。[教學(xué)片段一]一、交流解決問題的初步想法,確定轉(zhuǎn)化的策略1、出示例一:師:(課件出示例1)老師看到一組有趣的剪紙,我們一起來欣賞欣賞。(讓學(xué)生觀察圖形)看看他們有什么特征?看到后,我想;它們的面積相等嗎?(稍作停頓,讓學(xué)生思考片刻),你認(rèn)為呢?2、分析圖形:師:它是一個(gè)不規(guī)則的圖形,怎樣比較它們的面積呢?3、提問:你
3、能用簡單的符號把你的想法在練習(xí)紙上表示出來。(學(xué)生做題,老師巡視、指導(dǎo))4、小組交流師:剛剛老師發(fā)現(xiàn)許多同學(xué)想出了很巧妙的方法比較兩個(gè)圖形的面積,你是怎樣想的?把你的想法和同組的同學(xué)一起分享一下。小組交流)5、個(gè)別匯報(bào)師:請同學(xué)們坐好來,哪位同學(xué)愿意把你的方法與全班同學(xué)一起分享?(個(gè)別學(xué)生展示)6、在練習(xí)紙上表示轉(zhuǎn)化的過程:小結(jié),引出策略的優(yōu)點(diǎn):師:你為什么要把這個(gè)圖形轉(zhuǎn)化成長方形?(讓學(xué)生體會(huì)轉(zhuǎn)化的優(yōu)點(diǎn),引出板書:復(fù)雜—簡單)[教學(xué)反思]教學(xué)中,首先以教材上典型而具有直觀性的圖形的轉(zhuǎn)化為切入口。利用課件通過平移、旋轉(zhuǎn)等的方法體現(xiàn)轉(zhuǎn)化的策略。事實(shí)也證明這的確是最佳切入口,
4、學(xué)生容易體驗(yàn)出轉(zhuǎn)化策略的意義和價(jià)值。[教學(xué)片段二]及時(shí)鞏固練習(xí),掌握圖形問題中的轉(zhuǎn)化技巧即時(shí)鞏固練習(xí)十四第2題(1)總結(jié)策略優(yōu)勢,引出練習(xí):師:用轉(zhuǎn)化的策略解決問題可以使復(fù)雜的問題轉(zhuǎn)化成簡單的問題,下面我們用這個(gè)策略來解決一些問題。請同學(xué)先求第一和第二個(gè)涂色部分占圖形的幾分之幾?(出示練習(xí)十四第2題前兩個(gè)圖形)(2)學(xué)生練習(xí),師:請同學(xué)們動(dòng)筆做一做。(學(xué)生獨(dú)立練習(xí),教師巡視、指導(dǎo))。(3)個(gè)別提問展示。(4)和XX答案一樣的請舉手?,F(xiàn)在請看第三個(gè)圖形,你準(zhǔn)備怎樣轉(zhuǎn)化呢?現(xiàn)在小組里交流。[教學(xué)反思]我根據(jù)本班學(xué)生實(shí)際認(rèn)知水平,我在這里對教學(xué)內(nèi)容作出了及時(shí)的調(diào)整,讓學(xué)生通過了
5、例1的學(xué)習(xí)后,運(yùn)用轉(zhuǎn)化的策略解決練習(xí)十四的第二題,既可以體現(xiàn)策略的應(yīng)用,也對中下生有了一個(gè)方法的指導(dǎo)作用,更好的體現(xiàn)平面圖形轉(zhuǎn)化的技巧。[教學(xué)片段三]回顧整理,感悟轉(zhuǎn)化策略在圖形問題中的運(yùn)用1、總結(jié)過渡。師:其實(shí)轉(zhuǎn)化是一種常見的、極其重要的解決問題的策略。在我們以往的學(xué)習(xí)中,早就運(yùn)用這種策略解決問題了?;貞浺幌?,在以往的學(xué)習(xí)中,我們曾經(jīng)運(yùn)用轉(zhuǎn)化的策略解決過哪些問題?2、根據(jù)學(xué)生發(fā)言,有選擇地板書,點(diǎn)評,有目的地滲透板書。歸納優(yōu)點(diǎn):歸納:在求圖形的面積和計(jì)算中都用到了轉(zhuǎn)化的策略師:剛才同學(xué)們舉的這些運(yùn)用轉(zhuǎn)化策略解決問題的例子,有什么共同點(diǎn)?(引出板書:未知已知)[教學(xué)反思]
6、轉(zhuǎn)化策略是一種高層次的思維,屬于方法的上位概念。運(yùn)用轉(zhuǎn)化策略解決問題還需要具體的方法進(jìn)行操作。例題結(jié)束后,我并沒有泛泛而談“回顧一下,我們曾經(jīng)運(yùn)用轉(zhuǎn)化策略解決過哪些問題?”因?yàn)檫@個(gè)問題顯然放得過大,學(xué)生的回答涉及面鋪得過大,給人以“東一榔頭,西一棒槌”的感覺。所以,我仍以圖形面積問題中的轉(zhuǎn)化為線索,同時(shí)涉及體積問題,有序引導(dǎo)學(xué)生回顧并結(jié)合課件激發(fā)學(xué)生再現(xiàn)當(dāng)時(shí)解決問題的過程,這樣將一類問題系統(tǒng)地整理出來,有利于學(xué)生在體驗(yàn)策略的同時(shí),歸納和總結(jié)具體的操作方法,使學(xué)生對面積問題中的轉(zhuǎn)化策略有一個(gè)完整、系統(tǒng)的再體驗(yàn)和升華。這不僅從數(shù)學(xué)思想層面提升學(xué)生的素養(yǎng),而且更從解決問題的具體
7、方法上面給學(xué)生以豐富的經(jīng)驗(yàn)積累。具體方法的豐富反過來又深化了對轉(zhuǎn)化策略的認(rèn)識,這樣形成的策略才能深深扎根學(xué)生的心田,才具有方法論意義上的指導(dǎo)、調(diào)控作用。[教學(xué)片段四]運(yùn)用策略拓展練習(xí)1、出示試一試:師:用轉(zhuǎn)化的策略解決問題可以使復(fù)雜的問題轉(zhuǎn)化成簡單的問題,使未知轉(zhuǎn)化成已知。巧妙地運(yùn)用轉(zhuǎn)化的策略,還可以使我們的計(jì)算變得更簡單。下面我們一起來看一個(gè)例子。(出示試一試)2、初步解決“試一試”師:如果讓你來計(jì)算這個(gè)題目,你馬上想到用什么方法計(jì)算?(學(xué)生:通分計(jì)算)3、分析算式特點(diǎn):師:對,但這樣算有點(diǎn)復(fù)雜,能不能想想辦法,把這個(gè)算式轉(zhuǎn)