資源描述:
《數(shù)學方法在小學數(shù)學教學中運用論文:數(shù)學方法在小學數(shù)學教學中的運用》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在工程資料-天天文庫。
1、數(shù)學方法在小學數(shù)學教學中運用論文:數(shù)學方法在小學數(shù)學教學中的運用1.數(shù)形結合的思想方法數(shù)與形是數(shù)學教學研究對象的兩個側面,把數(shù)量關系和空間形式結合起來去分析問題、解決問題,就是數(shù)形結合思想。“數(shù)形結合”可以借助簡單的圖形、符號和文字所作的示意圖,促進學生形象思維和抽象思維的協(xié)調發(fā)展,溝通數(shù)學知識之間的聯(lián)系,從復雜的數(shù)量關系中凸顯最本質的特征。它是小學數(shù)學教材編排的重要原則,也是小學數(shù)學教材的一個重要特點,更是解決問題時常用的方法。2.集合的思想方法把一組對象放在一起,作為討論的范圍,這是人類早期就有的思想方法,繼而把一定程度抽象
2、了的思維對象,如數(shù)學上的點、數(shù)、式放在一起作為研究對象,這種思想就是集合思想。集合思想作為一種思想,在小學數(shù)學中就有所體現(xiàn)。在小學數(shù)學中,集合概念是通過畫集合圖的辦法來滲透的。3.對應的思想方法對應是人的思維對兩個集合間問題聯(lián)系的把握,是現(xiàn)代數(shù)學的一個最基木的概念。小學數(shù)學教學屮主要利用虛線、實線、箭頭、計數(shù)器等圖形將元素與元素、實物與實物、數(shù)與算式、量與量聯(lián)系起來,滲透對應思想。1.函數(shù)的思想方法恩格斯說:"數(shù)學中的轉折點是笛卡兒的變數(shù)。有了變數(shù),運動進入了數(shù)學,有了變數(shù),辯證法進入了數(shù)學,有了變數(shù),微分和積分也就立刻成為必要
3、的了?!蔽覀冎?,運動、變化是客觀事物的木質屬性。函數(shù)思想的可貴之處正在于它是運動、變化的觀點去反映客觀事物數(shù)量間的相互聯(lián)系和內(nèi)在規(guī)律的。學生對函數(shù)概念的理解有一個過程。在小學數(shù)學教學屮,教師在處理一些問題吋就要做到心中有函數(shù)思想,注意滲透函數(shù)思想。2.極限的思想方法極限的思想方法是人們從有限中認識無限,從近似中認識精確,從量變中認識質變的一種數(shù)學思想方法,它是事物轉化的重要環(huán)節(jié),了解它有重要意義?,F(xiàn)行小學教材中有許多處注意了極限思想的滲透。在“自然數(shù)”、“奇數(shù)”、“偶數(shù)”這些概念教學時,教師可讓學生體會自然數(shù)是數(shù)不完的,奇數(shù)、
4、偶數(shù)的個數(shù)有無限多個,讓學生初步體會“無限”思想;在循環(huán)小數(shù)這一部分內(nèi)容中,1^3=0.333…是一循環(huán)小數(shù),它的小數(shù)點后面的數(shù)字是寫不完的,是無限的;在直線、射線、平行線的教學時,可讓學生體會線的兩端是可以無限延長的。1.化歸的思想方法化歸是解決數(shù)學問題常用的思想方法?;?,是指將有待解決或未解決的問題,通過轉化過程,歸結為一類已經(jīng)解決或較易解決的問題中去,以求得解決??陀^事物是不斷發(fā)展變化的,事物之間的相互聯(lián)系和轉化,是現(xiàn)實世界的普遍規(guī)律。數(shù)學中充滿了矛盾,如已知和未知、復雜和簡單、熟悉和陌生、困難和容易等,實現(xiàn)這些矛■盾的
5、轉化,化未知為已知,化復雜為簡單,化陌生為熟悉,化困難為容易,都是化歸的思想實質。任何數(shù)學問題的解決過程,都是一個未知向已知轉化的過程,是一個等價轉化的過程?;瘹w是基本而典型的數(shù)學思想。我們實施教學時,也是經(jīng)常用到它,如化生為熟、化難為易、化繁為簡、化曲為直等。2.歸納的思想方法在研究一般性性問題之前,先研究幾個簡單的、個別的、特殊的情況,從而歸納出?般的規(guī)律和性質,這種從特殊到一般的思維方式稱為歸納思想。數(shù)學知識的發(fā)牛過程就是歸納思想的應用過程。在解決數(shù)學問題時運用歸納思想,既可認由此發(fā)現(xiàn)給泄問題的解題規(guī)律,乂能在實踐的基礎上
6、發(fā)現(xiàn)新的客觀規(guī)律,提出新的原理或命題。因此,歸納是探索問題、發(fā)現(xiàn)數(shù)學定理或公式的重要思想方法,也是思維過程中的一次飛躍。1.符號化的思想方法數(shù)學發(fā)展到今天,已成為一個符號化的世界。符號就是數(shù)學存在的具體化身。英國著名數(shù)學家羅素說過:“什么是數(shù)學?數(shù)學就是符號加邏輯。”數(shù)學離不開符號,數(shù)學處處要用到符號。懷特海曾說:“只要細細分析,即可發(fā)現(xiàn)符號化給數(shù)學理論的表述和論證帶來的極人方便,甚至是必不可少的?!睌?shù)學符號除了用來表述外,它也有助于思維的發(fā)展。如果說數(shù)學是思維的體操,那么,數(shù)學符號的組合譜成了“體操進行曲”?,F(xiàn)行小學數(shù)學教材十
7、分注意符號化思想的滲透。符號化思想在小學數(shù)學內(nèi)容中隨處可見,教師要有意識地進行滲透。數(shù)學符號是抽象的結晶與基礎,如果不了解其含義與功能,它如同“天書”一樣令人望而生畏。因此,教師在教學中要注意學生的可接受性。