25非簡并定態(tài)微擾理論.ppt

25非簡并定態(tài)微擾理論.ppt

ID:48166245

大?。?55.00 KB

頁數(shù):16頁

時(shí)間:2020-01-17

25非簡并定態(tài)微擾理論.ppt_第1頁
25非簡并定態(tài)微擾理論.ppt_第2頁
25非簡并定態(tài)微擾理論.ppt_第3頁
25非簡并定態(tài)微擾理論.ppt_第4頁
25非簡并定態(tài)微擾理論.ppt_第5頁
資源描述:

《25非簡并定態(tài)微擾理論.ppt》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。

1、第五章微擾理論§5-1非簡并定態(tài)微擾理論§5-2簡并情況下的微擾理論前面,利用薛定諤方程求解了一些簡單的能量本征問題。例如:線性諧振子、方勢(shì)阱、氫原子問題等。實(shí)際上,能用薛定諤方程嚴(yán)格求解的問題極為有限,大多數(shù)問題無法嚴(yán)格求解,只能求近似解。求近似解的方法很多,例如微擾理論、變分法等。每一種方法都有它的適用范圍,其中應(yīng)用最為廣泛的就是微擾理論。微擾理論的實(shí)質(zhì)是把體系的哈密頓寫成兩項(xiàng)和的形式其中(不顯含)的解已知或可精確求解,它包括了體系的主要性質(zhì);對(duì)體系的影響很小,可作擾動(dòng)處理。這樣,在的解的基礎(chǔ)上用修正的解,就得到了復(fù)雜體系的

2、的近似解。分為兩種情況:(1)不顯含,即定態(tài)問題,它又分為非簡并和簡并兩種情況;(2)顯含,可用它的近似解討論體系狀態(tài)之間的躍遷問題及光的發(fā)射和吸收等問題。本章主要介紹定態(tài)微擾理論。§5-1非簡并定態(tài)微擾理論一、一級(jí)近似解二、二級(jí)近似解三、結(jié)果討論§5-1非簡并定態(tài)微擾理論已知不顯含時(shí)間,且(是很小的實(shí)參量)的本征方程、已經(jīng)解出,且不簡并。設(shè)體系的定態(tài)薛定諤方程為由于和都與微擾有關(guān),可以把它們看作是表征微擾程度的參數(shù)的函數(shù),將它們展為的冪級(jí)數(shù),即將展開式代入薛定諤方程中,得得逐級(jí)近似方程……………………………假定已經(jīng)歸一化,則一

3、、一級(jí)近似解考慮的第個(gè)能量本征值和相應(yīng)本征函數(shù)的修正。把用展開代入到一級(jí)等式中,得做運(yùn)算,得當(dāng)時(shí),上式變成所以,能量一級(jí)修正值為當(dāng)時(shí),上式變成因此求和號(hào)上加一撇,表示不包含項(xiàng)。所以,波函數(shù)一級(jí)修正為總結(jié):一級(jí)近似解為二、二級(jí)近似解令代入到二級(jí)等式中,得做運(yùn)算,得當(dāng)時(shí),,上式變成所以,能量二級(jí)修正值為能量的二級(jí)近似值為三、結(jié)果討論1.微擾論的適用條件(1)一方面要足夠?。矗?,可把它看成擾動(dòng)項(xiàng);(2)另一方面能級(jí)間距要足夠大,所有要足夠遠(yuǎn)離被修正的能級(jí)。例如:庫侖場(chǎng)故微擾理論只適用于計(jì)算較低能級(jí)的修正。注意:以上公式只適用于能量本

4、征值非簡并且分立的情況。2.在表象中的矩陣形式可見,在表象中,的對(duì)角元素就是各能級(jí)的一級(jí)修正,矩陣的對(duì)角元素為一級(jí)近似值,二級(jí)修正與非對(duì)角元素有關(guān)。例1.一電荷為的線性諧振子受恒定弱電場(chǎng)作用,電場(chǎng)沿正方向。用微擾法求體系的定態(tài)能量和波函數(shù)。解:其中的本征解(1)求能量所以,準(zhǔn)確到二級(jí)近似的能量為(2)求波函數(shù)所以,波函數(shù)的一級(jí)近似為討論:實(shí)際上此題可準(zhǔn)確求解能量本征值能量本征方程所以例2.設(shè)在表象中,的矩陣表示為其中,試用微擾論求能級(jí)二級(jí)修正。解:

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。