資源描述:
《中考數(shù)學(xué)復(fù)習(xí)方程(組)與不等式(組).doc》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、方程(組)與不等式(組)目錄第6課時(shí)一次方程(組)第7課時(shí)一元二次方程序第8課時(shí)整式方程(組)的應(yīng)用第9課時(shí)分式方程及其應(yīng)用第10課時(shí)一元一次不等式(組)第11課時(shí)一元一次不等式(組)的應(yīng)用第二單元方程(組)與不等式(組)第6課時(shí)一次方程組
2、考點(diǎn)聚集
3、考點(diǎn)1等式的概念和等式的性質(zhì)1.等式:表示關(guān)系的式子,叫做等式.2.等式的性質(zhì)(1)等式兩邊都加上(或減去)同一個(gè)數(shù)(或同一個(gè)整式),所得的結(jié)果仍是等式.即:如果ab,那么a±____=b±c.(2)等式兩邊都乘(或除以)同一個(gè)數(shù)(或同一個(gè)整式)(除數(shù)或除式不
4、能為),所得的結(jié)果仍是等式.即:如果a=b,那么ac=b或:(c≠0).考點(diǎn)2方程的概念1.方程:含有的等式叫做方程.2.方程的解:使方程左右兩邊的值的未知數(shù)的值叫做方程的解,一元方程的解,也叫它的根.3.解方程:求方程的的過程叫做解方程.考點(diǎn)3一元一次方程的概念與解法1.一元一次方程的概念:只含有個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是次的整式方程,叫做一元一次方程.【點(diǎn)撥】一元一次方程的一般形式:ax+b=0(a≠0).2.解一元一次方程的一般步驟(1)去分母:在方程兩邊都乘各分母的最小公倍數(shù),注意別漏乘.(2)
5、去括號(hào):注意括號(hào)前的系數(shù)與符號(hào).(3)移項(xiàng):把含有未知數(shù)的項(xiàng)移到方程的一邊,其他項(xiàng)移到另一邊,注意移項(xiàng)時(shí)要改變符號(hào).(4)合并同類項(xiàng):把方程化成其標(biāo)準(zhǔn)形式ax=b(a≠0).(5)系數(shù)化為1:方程兩邊同除以x的系數(shù),得x=的形式.考點(diǎn)4二元一次方程組的有關(guān)概念1.二元一次方程:含有個(gè)未知數(shù),并且含有未知數(shù)的每一項(xiàng)都是次的整式方程.2.二元一次方程的解:使二元一次方程兩邊的值的兩個(gè)未知數(shù)的值叫做二元一次方程的解,如是方程y-x=1的一個(gè)解.【點(diǎn)撥】任何一個(gè)二元一次方程都有無數(shù)組解.但求特殊解時(shí),解是有限個(gè),如
6、寫出x+2y=6的自然數(shù)解為3.二元一次方程組的解:在一個(gè)二元一次方程組中,適合二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程組的解.考點(diǎn)5二元一次方程組的解法1.基本思路:消去一個(gè)未知數(shù)(簡稱消元),得到一個(gè)一元一次方程.2.常用方法(1)代入消元法:把其中一個(gè)方程的某一個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示,然后把它代入到另一個(gè)方程中,便得到一個(gè)一元一次方程.(2)加減消元法:如果兩個(gè)方程中有一個(gè)未知數(shù)的系數(shù)相等(或互為相反數(shù)),那么把這兩個(gè)方程相減(或相加);否則,先把兩個(gè)方程分別乘適當(dāng)?shù)臄?shù),化成
7、有一個(gè)未知數(shù)的系數(shù)相等(或互為相反數(shù))的形式,再把所得到的方程相減(或相加).【點(diǎn)撥】(1)在解二元一次方程組時(shí),也常用整體代入法、換元法;(2)二元一次方程組的解應(yīng)寫成的形式.
8、歸類示例
9、類型之一等式的概念及性質(zhì)命題角度:1.等式及方程的概念2.等式的性質(zhì)例1下列等式的變形,正確的是()A.若x=y,則x-5=5-yB.a=b,則C.若(b≠0,d≠0),則a=c,b=dD.若2πR=2πr,則R=r[解析]根據(jù)等式的性質(zhì)去判斷,A是錯(cuò)的,B中x-3可能為0,因此B也是錯(cuò)的,對(duì)于C,如說,顯然1≠2,故C
10、也是錯(cuò)的,D中的2π≠確0,D是正確的。利用等式的基本性質(zhì)將等式的兩邊乘或除以同一個(gè)數(shù)時(shí),除數(shù)一定不為零.類型之二一元一次方程的解法命題角度:1.一元一次方程及其解的概念2.解一元一次方程的一般步驟例2【2010瀘州】若x=2是關(guān)于x的方程2x+3m-l=0的解,則m的值為()A.-1B.0C.1D.;[解析]把x-2代入方程得2×2+3m-1=0,解得m=-1類型之三二元一次方程(組)的有關(guān)概念命題角度:1.二元一次方程(組)的概念2.二元一次方程(組)的解的概念例3[2009株洲]孔明同學(xué)在解方程組的過
11、程中,錯(cuò)把b看成了6,其余的解題過程沒有出錯(cuò),解得此方程組的解為又已知直線y=kx+b過點(diǎn)(3,1),則b的正確值應(yīng)該是.[解析]錯(cuò)把b看成了6,則是方程y=kx+b的解,由此求解得k=4,直線y=4x+b過點(diǎn)(3,1),由此求得b=-11.二元一次方程組的解(一對(duì)未知數(shù)的值)是組成方程組的兩個(gè)方程的公共解,把其中的某一個(gè)方程看錯(cuò)時(shí)所得的解仍是另一個(gè)方程的解.類型之四二元一次方程組的解法命題角度:1.代入消元法2.加減消元法例4[2011永州]解方程組:解:①+②×3。得10x=50,解得x=5,把x=5代
12、入②;得2×5+y=13,解得y=3。于是,得方程組的解為變式題【2011.岳陽】解方程組:把①代入②得5x-3×3=1,解得x=2。把x=2代入①得y=1,所以方程組的解為解二元一次方程組時(shí)主要運(yùn)用了轉(zhuǎn)化思想——化二元一次方程組為一元一次方程,因此其關(guān)鍵是消元,消元的方法有代入法(含整體代入法)和加減消元法.
13、回歸教材
14、教材母題[湖南教育版七下P26B組T2]當(dāng)x=2與x=-2時(shí),代數(shù)式kx+b的值分別是-2,