資源描述:
《劉德波《反比例函數(shù)》.ppt》由會員上傳分享,免費在線閱讀,更多相關內容在教育資源-天天文庫。
1、§17.4.1.反比例函數(shù)(1)溫故而知新1、一次函數(shù)與正比例函數(shù)的解析式:溫故而知新溫故而知新溫故而知新溫故而知新一次函數(shù):y=kx+b(k≠0)正比例函數(shù):y=kx(k≠0)關系:所有的正比例函數(shù)都是一次函數(shù),但一次函數(shù)不一定是正比例函數(shù)。2、它們有何關系?新知探究之導例思考3、小明同學用50元錢買學習用品,設買學習用品數(shù)量為x件,平均單價為y元.您能用含有x的代數(shù)式表示y嗎?4、學校課外生物小組的同學準備自己動手,用舊圍欄建一個面積為24平方米的矩形飼養(yǎng)場.設它的一邊長為x(米),求另一邊的長y(米)與x
2、的關系式.5、甲、乙兩地相距120千米,汽車以速度v(千米/小時)從甲地駛往乙地,求汽車行駛時間t(小時)與v的關系。1、小紅每天做5道數(shù)學課外練習,試寫出小紅所做題目的總數(shù)y和練習天數(shù)x之間的關系式.2、倉庫內原有粉筆400盒,如果每周領出36盒,求倉庫內余下的粉筆盒數(shù)Q與周數(shù)t之間的關系式.問:幾個函數(shù)表達式:、、、哪些是已學的一次函數(shù)、正比例函數(shù)?請你根據其它函數(shù)表達式的形式寫出這類函數(shù)的一般形式?它們的右邊有什么共同特點?新知探究之深入思考獲得新知反比例函數(shù)的定義:一般地,形如(k為常數(shù),k≠0)的形式
3、,叫做反比例函數(shù).新知理解思考:如何判斷所給函數(shù)y是不是x的反比例函數(shù)?(k為常數(shù),k≠0)①只含一個關于自變量x的分式;②分子為非零常數(shù);③分母是關于自變量x的單項式.特征:新知理解思考:你能將反比例函數(shù)定義中的解析式改寫成其他形式嗎?反比例函數(shù)或xy=k(k≠0)(k≠0)可改寫成(k≠0)記住這三種形式,都是反比例函數(shù)學以致用例1、下列關系式中的y是x的反比例函數(shù)嗎?如果是,比例系數(shù)k是多少?(1)(2)(3)(4)(1)某儲蓄所月利率是0.25%,存入100元本金后,則本息之和y(元)是所存月數(shù)x的函數(shù)
4、關系;(2)食堂存煤15000千克,可使用的天數(shù)t是平均每天的用煤量Q(千克)的函數(shù);(3)三角形的面積S是常數(shù)時,它的某一邊的長y是該邊上的高x的函數(shù).例2、列出下列問題中的函數(shù)關系式,并指出他們是什么函數(shù):(知識點應用:k≠0,次數(shù)為-1)解:由反比例函數(shù)的定義有:即m=-2為反比例函數(shù).當m為何值時,函數(shù)解得∴當m=-2時,函數(shù)為反比例函數(shù).例3能力提升即m=±4為正比例函數(shù).當m為何值時,函數(shù)解得∴當m=±4時,函數(shù)為正比例函數(shù).解:由正比例函數(shù)的定義有:能力提升仿寫實例3、小明同學用50元錢買學習用品
5、,設買學習用品數(shù)量為x件,平均單價為y元.用含有x的代數(shù)式表示y.4、學校課外生物小組的同學準備自己動手,用舊圍欄建一個面積為24平方米的矩形飼養(yǎng)場.設它的一邊長為x(米),求另一邊的長y(米)與x的關系式.5、甲、乙兩地相距120千米,汽車以速度v(千米/小時)從甲地駛往乙地,求汽車行駛時間t(小時)與v的關系。能力提升如果y與x成反比例,則y與x的關系式是(k≠0)拓展:如果y與x成反比例,z與y成正比例,則z與x成_____;解:∵y與x成反比例將①代入②得:z=k1k2x-1∵k1≠0,k2≠0∴k1k
6、2≠0∴z與x成反比例函數(shù)關系①又∵z與y成正比例∴z=k2y(k2≠0)②知已x=a,y=b滿足反比例函數(shù),則ab=___拓展:已知A(x1,y1),B(x2,y2)都滿足反比例函數(shù).若x1x2=-4,則y1y2=____.6-9能力提升小結反比例函數(shù)要點:1、常數(shù)k不等于02、反比例函數(shù)的特征3、三種形式課后作業(yè)必做:1.教材P59練習第1題2.設計一個日常生活中的反比例的情景應用,并寫出其關系式.選做:已知y-1與成反比例,且當x=1時,y=4,求y與x的函數(shù)表達式,并判斷是哪類函數(shù)?謝謝!