資源描述:
《常用的誘導(dǎo)公式.doc》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、常用的誘導(dǎo)公式 公式一:設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等: sin(2kπ+α)=sinαk∈z cos(2kπ+α)=cosαk∈z tan(2kπ+α)=tanαk∈z cot(2kπ+α)=cotαk∈z 公式二:設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系: sin(kπ+α)=-sinαk∈z cos(kπ+α)=-cosαk∈z tan(kπ+α)=tanαk∈z cot(kπ+α)=cotαk∈z 公式三:任意角α與-α的三角函數(shù)值之間的關(guān)系:
2、sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四:利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cot
3、α 公式六:π/2±α與α的三角函數(shù)值之間的關(guān)系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα 誘導(dǎo)公式記憶口訣:“奇變偶不變,符號看象限”。 “奇、偶”指的是整數(shù)n的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限
4、”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負(fù)號?! 耙蝗欢?;三兩切;四余弦”。這十二字口訣的意思就是說:第一象限內(nèi)任何一個角的四種三角函數(shù)值都是“+”;第二象限內(nèi)只有正弦是“+”,其余全部是“-”;第三象限內(nèi)只有正切和余切是“+”,其余全部是“-”;第四象限內(nèi)只有余弦是“+”,其余全部是“-”。編輯本段其他三角函數(shù)知識同角三角函數(shù)的基本關(guān)系式 倒數(shù)關(guān)系 tanα·cotα=1 sinα·cscα=1 cosα·secα=1
5、商的關(guān)系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方關(guān)系 sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)同角三角函數(shù)關(guān)系六角形記憶法 構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型?! 〉箶?shù)關(guān)系 對角線上兩個函數(shù)互為倒數(shù); 商數(shù)關(guān)系 六邊形任意一頂點上的函數(shù)值等于與它相鄰的兩個頂點上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積)。由此,可
6、得商數(shù)關(guān)系式?! ∑椒疥P(guān)系 在帶有陰影線的三角形中,上面兩個頂點上的三角函數(shù)值的平方和等于下面頂點上的三角函數(shù)值的平方。兩角和差公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角的正弦、余
7、弦和正切公式 sin2α=2sinαcosα cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan2α=2tanα/(1-tan^2(α))半角的正弦、余弦和正切公式 sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=(1—cosα)/sinα=sinα/1+cosα萬能公式 sinα=2tan(α/2)/(1+tan^2(α/2))
8、 cosα=(1-tan^2(α/2))/(1+tan^2(α/2)) tanα=(2tan(α/2))/(1-tan^2(α/2))三倍角的正弦、余弦和正切公式 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))三角函數(shù)的和差化積公式 sinα+s