Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown

Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown

ID:81816524

大?。?.66 MB

頁數(shù):7頁

時(shí)間:2023-07-20

上傳者:U-14522
Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown_第1頁
Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown_第2頁
Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown_第3頁
Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown_第4頁
Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown_第5頁
Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown_第6頁
Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown_第7頁
資源描述:

《Bandgap Tuning in Molecular Alloy Crystals Formed by Weak Chalcogen Interactions - Thomas et al. - 2021 - Unknown》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

pubs.acs.org/JPCLLetterBandgapTuninginMolecularAlloyCrystalsFormedbyWeakChalcogenInteractionsSajeshP.Thomas,ReshmiThomas,ThomasBj?rnE.Gr?nbech,MartinBondesgaard,ArefH.Mamakhel,VictoriaBirkedal,andBoB.Iversen*CiteThis:J.Phys.Chem.Lett.2021,12,3059?3065ReadOnlineACCESSMetrics&MoreArticleRecommendations*s?SupportingInformationABSTRACT:Wedemonstratesystematictuningintheopticalbandgapsofmolecularcrystalsachievedbythegenerationofmolecularalloys/solidsolutionsofaseriesofdiphenyldichalcogenidescharacterizedbyweakchalcogenbondinginteractionsinvolvingS,Se,andTeatoms.Despitethevarietyinchalcogenbondinginteractionsfoundinthisseriesofdichalcogenidecrystals,theyshowisostructuralinteractiontopologies,enablingtheformationofsolidsolutions.ThealloycrystalsexhibitVegard’slaw-liketrendsofvariationintheirunitcelldimensionsandanonlineartrendforthevariationinopticalbandgapswithrespecttotheircompositions.Energy-dispersiveX-rayandspatiallyresolvedRamanspectroscopicstudiesindicatesigni?canthomogeneityinthedomainstructureofthesolidsolutions.Quantumperiodiccalculationsoftheprojecteddensityofstatesprovideinsightsintothebandgaptuningintermsofthemixingofstatesinthealloycrystalphases.ttemptstotunematerialpropertiesviaalloyformationtransferinteractionswherethestoichiometryofthedonororA14,15datebacktothebronzeage.Generatinghigh-entropyacceptormoleculesisvaried,and(III)alloysof1,2metallicalloysorsolidsolutionsofknownstructuraltypesofisostructuralcompoundswithahighdegreeofshapeandinorganiccompoundsisane?cientwaytoalteroptical,16?22sizesimilarity.Recently,Desirajuetal.demonstratedthe3?6electronic,andcatalyticproperties.Theformationofsolidmechanicalhardeningofsolidsolutionsformedbytautomerssolutionsofinorganicmaterialsisquitecommon,asitis23ofthedrugomeprazole.Infunctionalmolecularmaterials,facilitatedbysimilarityinatomic/ionicradii,valency,andalloyscanhavepromisingapplicationsinbandgapengineeringDownloadedviaBUTLERUNIVonMay16,2021at08:50:29(UTC).oxidationstatesoftheatomsorionsthatcanoccupysimilaroforganicsemiconductorsandphotovoltaiccrystals.24crystallographicpositions.However,examplesoforganicsolidCompositionvariationwithrespecttotheionicspeciesin7,8solutionsthatformmolecularcrystalsareratherrare.Theorganic?inorganichybridperovskitestructures,metal?organicfactthatmoleculeshaverathercomplexandirregularshapesframeworks,andsaltshavebeenreportedtoshowtuninginandhighlydirectionalintermolecularinteractionsmakesittheiroptical/electricalproperties.25,26However,studiesthatSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.di?culttosubstituteamoleculeincrystalbyachemicallydemonstratesystematictuningintheopticalbandgapsindi?erentmolecule.Crystalengineeringapproachestodesignmolecularsolidsolutionswithdetailedcrystallographicstudiesmulticomponentcocrystalshavebeenshowntobee?ectiveinonthestructure?propertyrelationsareraretoourknowledge.modulatingthechemicalandphysicalpropertiesofmolecularSolidsolutionsoftypeIaredistinctinthesensethattheylacksolidsrelevanttopharmaceuticalchemistryandmaterialdirectinteractionsbetweentheguestmoleculesofwhichthe9science.Whileacocrystalhasade?nitestoichiometryofstoichiometriesaretuned,makingitdi?cultfortheelectronicconstituentmolecules,continuouslyvaryingstoichiometriesstatesofthecomponentstomix.FortypeIIcrystals,althougharepossibleforasolidsolution.Beingabletovarythethedirectinteractionbetweenthevaryingmolecularstoichiometryofmolecularcomponentsincrystalsmightcomponentsarelimited,thestrongπ···πstackingcanleadtoprovidemeansto?ne-tunetheopticalandelectronicpropertiesofmolecularmaterialswithawiderangeofapplications.MostexamplesoforganicsolidsolutionsareReceived:February25,2021formedbyoneofthefollowingstructuraltypes(seeFigure1):Accepted:March15,2021(I)porousorhost?guestcrystalstructureswithvaryingPublished:March19,2021stoichiometryofmolecules/atomsconstitutingthehost10?13frameworksortheguests,(II)donor?acceptortypemolecularcomplexesformedbystrongπ···πstackingorcharge?2021AmericanChemicalSocietyhttps://doi.org/10.1021/acs.jpclett.1c006143059J.Phys.Chem.Lett.2021,12,3059?3065

1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLettereachother.Thecellparametersincreasegraduallyfromthesulfuranalogue(dpdS)tothetelluriumanalogue(dpdTe).Theirunitcellvolumesareinthefollowingorder:Vcell(dpdS)=1079.8(2)?3

2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterqualitysinglecrystalsobtainedforaseriesofdi?erenttuningintheopticalandelectronicpropertiesaswell,similarstoichiometriesfordpdS?dpdSesolidsolutions(dpdSxSe1?x)tothetrendsreportedformanyinorganicsolidsolutionenabledtheaccuratedeterminationoftheirunitcellsemiconductors.ThephysicalevidencefortheopticalbandgapparametersandcompositionsbyusingX-raydatacollectedtuningindpdSxSe1?xanddpdSexTe1?xsolidsolutionwasat280K.Thecompositionsofindividualmolecularimpliedbythecolorchangesinthesecrystals.ThecrystalsofcomponentsweredeterminedbycarefulcrystallographicdpdS,dpdSe,anddpdTearecolorless,yellow,anddarkred,occupancyre?nementsofSversusSeatomsinthesecrystalrespectively.Interestingly,thecrystalsofthemolecularsolidstructures.Twodi?erentstrategieswereadoptedforthesolutionsdpdSxSe1?xexhibitedpaleyellowcolor,andthoseofoccupancyre?nement(i)keepingtheatomicdisplacementdpdSexTe1?xshowedorangecolor(Figure3a?c).Thisimpliesparameters(ADPs)ofbothSandSeatomsconstrainedtobesamewhilere?ningtheiroccupanciesand(ii)theADPsofbothSandSeatomswere?xedtothevaluesfromtheparentcrystalstructuresofdpdSanddpdSe(seetheSupportingInformationforthere?nementdetails).Theoccupancyvalues(therebythecomposition)obtainedbyboththesemethodsdi?eredbyaround4?8%,andthevaluesfromthere?nementmethod(i)wereusedforfurtheranalysisanddiscussionhere,asitresultedinsigni?cantlybetteragreementparametersinthere?nement(R-factor,residualelectrondensity,etc.)ascomparedtomethod(ii).Also,ouranalysisrevealedthatdi?erentsinglecrystalsfromthesamecrystallizationexperi-mentexhibitedvariationsincomposition(upto9%variationfor1:1alloys,andameanabsolutedeviationofaround3%fromthemeancompositionvalues;seeTablesS3andS4).Weobservedasystematicvariationinthecellparametersofthesolidsolutionswithrespecttotheircomposition(Figure2a?d).Figure3.Manifestationofopticalbandgaptuninginmolecularsolidsolutionsascolorchangeincrystalsof(a)dpdSe,(c)dpdTe,and(b)thesolidsolutioncrystalofdpdSexTe1?x.(d,e)NonlineartrendobservedintheopticalbandgapsofmolecularsolidsolutionsofdpdS?SeanddpdSe?Tewiththeircompositions.thatthetuningoftheopticalbandgapsisindeedpossiblebytheformationofsolidsolutions.Itmaybenotedthatsuchagradualvariationincolorwasreportedinaccidentlyformedsolidsolutioncrystalsofcis-mer-MoOCl2(PMe3)3withtheimpuritymer-MoCl3(PMe3)3alongwithanapparentvaria-tioninMo?Obondlengths(asanartifactofcrystallographic47,48disorder).Toquantitativelyexaminethis,weanalyzedthebandgapsoftheparentcrystalsaswellasthesolidsolutionsdpdSxSe1?xanddpdSexTe1?x.TheUV?visre?ectancespectraofthegroundsamplesofthecrystalsweretransformedintoTaucplotsbyusingKubelka?Munkfunctionsaspertheestablished49,50method.TheopticalbandgapsoftheparentcrystalsFigure2.SystematicvariationsofunitcellparametersinthesolidsolutionsofdpdSanddpdSeshowingVegard-liketrendswiththeexaminedinthisstudyarethefollowing:Egap(dpdS)=3.47eV,percentagecompositionofdpdSinthesolidsolutions.Egap(dpdSe)=2.76eV,andEgap(dpdTe)=2.34eV.Thebandgapsofthesolidsolutionswerefoundtobesystematicallyvaryingbetweenthevaluesoftheirparentcomponents.Inthecontextofinorganicsolids,suchavariationiswellHowever,thetrendinthisvariationwasfoundtobefarestablishedandisgivenbyVegard’slaw:a(A(1?x)Bx)=(1?x)fromlinearandmimickedanexponentiallikecurveforbotha(A)+xa(B),wherea(A)anda(B)arethelatticeparametersdpdSxSe1?xanddpdSexTe1?xsolidsolutions(Figure3d,e).Itisofthepureparentcrystals,a(A(1?x)Bx)isthatofthesolidnotablethatforthedpdSxSe1?xsolidsolutionsofcompositions45,46solutions,andxisthemolarfractionoftheconstituentB.40%and60%thebandgapvaluesare2.84and2.88eV,However,studiesofsuchtrendsformolecularsolidsolutionsrespectively,whichareclosertothebandgapvalueofdpdSe15,18arerare.RecentworksbyThomasetal.andMatzgeretal.muchlowerthantheaveragebandgapvaluesfortheparentsuggestedthatmolecularsolidsolutionscouldalsoshowcomponents(3.12eV).Asimilartrendwasobservedforthe15,18Vegard’slaw-likecorrelations,albeitwithsomeoutliers.InbandgapsofdpdSexTe1?xsolidsolutionswiththeircomposi-thisstudy,Vegard-likevariationsinthecellparametersoftions.Toourknowledge,suchasystematictrendinbandgapdpdSxSe1?xmolecularsolidsolutions(despitesmalldeviationstuningofmolecularalloyshasnotbeenreported.Ininorganicfromlinearity)pointtothepossibilityofsuchsystematicsolidsolutions,thereareexamplesofbothlinearvariationof3061https://doi.org/10.1021/acs.jpclett.1c00614J.Phys.Chem.Lett.2021,12,3059?3065

3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter51,52Egap(suchasZnS(1?x)Sex)andnonlinearvariationssuchas53?55“bowing”(forexample,In(1?x)AlxN).IntheexamplereportedbyPeietal.,thebandgapofthesolidsolutionwasshowntobelowerthanthebandgapvaluesoftheparent27componentsasopposedtoasystematictuning.TheloweredbandgapfoundinthatexamplewasattributedtotheformationofJ-aggregatesbetweenthemolecularcomponentsinthealloymatrix.Inthequaternarycharge-transfersolidsolutionsreportedbyMatzgeretal.,thesmallandirregularchangesobservedintheopticalbandgapsofsolidsolutionswerelinkedtostrongcharge-transferinteractionbetweendonorandacceptormoleculesandthevariationintheextentofcharge15transfer.ItisinterestingtonotethatthealloysinthisstudyexhibitrelativelyweakintermolecularinteractionssuchasC?H···S,C?H···Se,C?H···Te,Se···Se,andTe···πchalcogenbonding.Hence,ourresultsindicatethatbandgaptuningcouldberealizedeveninmolecularcrystalswithsuchweakinteractionsdevoidofanystrongdonor?acceptorcharge-transferinteractionsorπ···πstacking.Toexamineifthebandgaptuninginthealloysleadtotuninginemissionproperties,wemeasuredphotoluminescence(PL)ondpdTe,dpdSe,andtheiralloycrystals.However,nosigni?cantPLemissioncouldbeobservedinthesolid-statesamples,possiblyduetoquenchinge?ects(spectragivenintheSupportingInformation).BecauseX-raycrystalstructuresprovideusonlythespatiallyFigure4.Cartoonrepresentationsof(a)heterogeneousdomainstructurewithseparateddomainsofindividualcomponentsand(b)aaveragedpictureofthetwodi?erentcomponentsinacrystal,ithighlyhomogeneousdomainstructure.(c)Electronicbandstructuresisimportanttostudythedetailsofthespatialdistributionofoftheparentcompoundswiththedensityofstatesprojectedtodomainsinsolidsolutioncrystals.Twomajorpossibilitiesofchalcogenatom(S,Se,orTe)states:thetotalDOSareaisshadedinthedistributionofthemolecularcomponentscanbeblue,andthechalcogenatomprojectionoftheDOSiscoloredconsideredasshowninFigure4:(a)aheterogeneousorange.(d)DOSplotsfordpdS0.5Se0.5anddpdSe0.5Te0.5withthedistributionwithmicrometer-sizeddomainsofindividualDOScorrespondingtoheavierchalcogenatominyellowandthesumcomponentsformingthecrystallitesofthesolidsolutionsofstatesfromboththechalcogenatomsinorange.and(b)amorehomogeneousdistributionwherethecomponentsaremixedatnanodimensionsoratthemoleculardispersiveX-rayspectroscopic(EDX)analysisofthelevel.Thedomainstructureofthesolidsolutionsisadistributionofdi?erentmolecularcomponentsinsinglesigni?cantfactorinthecontextoftheirbandgaptuning,crystalsofdpdSxSe1?x.TheEDXspectra(withdistinctenergysinceahighlyhomogeneousmixingwouldhelpe?ectivepeaksfortheelementsSandSe)weremappedonthecrystalintermolecularinteractionsbetweendi?erentmolecularsurfacewithaspatialresolutionof2nm.Figures5a?cshowcomponentsinthealloyphases.TheobservedtuninginthethattheEDXspectralmapshaveSandSepeaksfromopticalbandgapsmaybeunderstoodintermsofasubmicrometerregionsonthecrystals,indicatinganearlyhomogeneousmixingofdi?erentmolecularcomponents,homogeneousdomainstructure.Inaddition,wequanti?edthewhichinturnwouldimplytheoccurrenceofhetero-chalcogenpercentagecompositionofindividualcomponentsbyintegrat-bondssuchasS···SeorSe···Teinteractionsinthesolid?ingtheareaunderthespectralpeakscorrespondingtoSandsolutioncrystals.TheX-raymodelsofdpdSxSe1?xandSeseparately.dpdSexTe1?xshowedS···Sehetero-chalcogenbondingofBecausetheEDXmappinganalysiswasperformedona3.644(1)?andSe···TechalcogenbondinginteractionsofsinglecrystalforwhichgoodqualityX-raydi?ractiondatawere3.810(1)and4.092(1)?.Wecalculatedthebandstructuresofalreadycollected,theelementalcompositionfromEDXwasthesesolidsolutionsincomparisonwiththeparentcomparedtothevaluesfromtheSXRDoccupancyre?nementcompoundsusingtheX-raycrystalstructuresasinputsinmodels.ThedpdScompositionof59%(esd~3.5%)obtainedperiodicquantumchemicalcalculations.TheanalysisofthefromtheEDXmapmatchedwelltheoccupancyvalueof59%projecteddensityofstates(DOS)intoelementalcontributions(e.s.d.~1%)fromtheSXRDmodelbymethod(i).Thegoodshowedthattheenergystateslyinginthebandedges(highestagreementbetweentheresultsfromSXRD(abulkmeasure-occupiedstatesandlowestunoccupiedstates)arepredom-mentfromthesinglecrystal)andEDX(surfacemapping)inantlyfromthechalcogenatomssuchasS,Se,andTeinfurthervalidatesthehomogeneityofdomaindistributionasdpdS,dpdSe,anddpdTe,respectively(Figure4c).TheDOSwellasourX-rayoccupancymodelingstrategy.Inaddition,toplotsofthesolidsolutionsrevealthatthemixingofstatesprobeanycharacteristicspectroscopicfeaturescorrespondingindeedleadtotheshiftsintheelectronicstatesatthebandtothesolidsolutions,weperformedspatiallyresolvedRamanedgesandtheloweringofthebandgap(seetheSupportingstudiesonthesinglecrystalsofdpdSxSe1?x.ThecharacteristicInformationfordetails).TheseresultsfurtherdemonstratethatpeakscorrespondingtotheS?Sbondvibrations(541cm?1)amixingofthecomponentphasesatamicroscopiclevelisandSe?Sebondvibrations(312cm?1)inthedpdSSex1?xindeedessentialfore?ectivebandgaptuning.Hence,tocrystalswerefoundtobeatthesamepositionsasintheirinvestigatethedomainstructure,weperformedenergyparentcrystals(dpdSanddpdSe).However,theratiosofpeak3062https://doi.org/10.1021/acs.jpclett.1c00614J.Phys.Chem.Lett.2021,12,3059?3065

4TheJournalofPhysicalChemistryLetters■pubs.acs.org/JPCLLetterASSOCIATEDCONTENT*s?SupportingInformationTheSupportingInformationisavailablefreeofchargeathttps://pubs.acs.org/doi/10.1021/acs.jpclett.1c00614.CrystallographicdatatablesanddetailsofRaman,EDX,UV?visdi?usere?ectancespectroscopicmeasurements,anddetailsofcomputationalcalculations(PDF)■AUTHORINFORMATIONCorrespondingAuthorBoB.Iversen?CenterforMaterialsCrystallography,DepartmentofChemistryandiNano,AarhusUniversity,Aarhus8000,Denmark;orcid.org/0000-0002-4632-1024;Email:bo@chem.au.dkFigure5.Top:(a?c)EDXmapsofthedpdS?SesolidsolutionAuthors(59:41)highlightingregionsofdi?erentelementalcontentssulfurSajeshP.Thomas?CenterforMaterialsCrystallography,(red),selenium(green),andoverlappedmapshowingnearlyDepartmentofChemistryandiNano,AarhusUniversity,homogeneousdistributionofdpdSanddpdSeinthealloycrystalAarhus8000,Denmark;orcid.org/0000-0003-3552-(scalebar=1μm).Bottom:Ramanspectralpeakscorrespondingto8625S?SandSe?SecharacteristicvibrationsindpdSanddpdSeinthedpdS?Sesolidsolutioncrystaland(e)spatialmappingofS?S/Se?ReshmiThomas?CenterforMaterialsCrystallography,SeRamanintensityratiocorrespondingtothevariationofDepartmentofChemistryandiNano,AarhusUniversity,compositionwithinasinglecrystal.Aarhus8000,DenmarkThomasBj?rnE.Gr?nbech?CenterforMaterialsCrystallography,DepartmentofChemistryandiNano,AarhusUniversity,Aarhus8000,DenmarkintensitiescorrespondingtoS?SmodeandSe?SemodeinaMartinBondesgaard?CenterforMaterialsCrystallography,seriesofdpdSxSe1?xcrystalswerefoundtobevaryingwithDepartmentofChemistryandiNano,AarhusUniversity,respecttothecompositionx,inasystematicbutnonlinearAarhus8000,Denmarkfashion(seeFigureS11).Inaddition,thiscorrelationinArefH.Mamakhel?CenterforMaterialsCrystallography,Ramanpeakintensityratios(IS?S/ISe?Se)wasutilizedtoprobeDepartmentofChemistryandiNano,AarhusUniversity,thevariationofcompositionwithinasinglecrystal.Forthis,Aarhus8000,DenmarkthespatiallyresolvedRamanspectralmapsweretransformedVictoriaBirkedal?InterdisciplinaryNanoscienceCenterintopeakintensityratiomapsasshowninFigure5e.Thefact(iNano)andDepartmentofChemistry,AarhusUniversity,thatpeakintensityratioIS?S/ISe?SevariesinaverysmallrangeAarhus8000,Denmark;orcid.org/0000-0002-1360-suggestedthatthecompositionwithinasinglecrystalisnearly8870uniformalbeitwithsmalldi?erences.Completecontactinformationisavailableat:Insummary,thesolidsolutionsdpdSxSe1?xanddpdSexTe1?xhttps://pubs.acs.org/10.1021/acs.jpclett.1c00614reportedhereestablishthatbandgaptuningispossibleeveninmolecularcrystalswhicharestabilizedbyweakinteractionsFundingsuchasS···SorSe···SechalcogenbondsanddevoidofstrongThisworkwassupportedbytheVillumFoundation.S.P.T.charge-transferinteractionsorπ···πstacking.ThedomainacknowledgesEUfundingforMarieSk?odowska-CuriestructureofthesolidsolutionsintermsofthedistributionofIndividualFellowship(Grant798633).componentsprobedbyEDXmappingsuggestedanearlyhomogeneousdistribution.Electronicbandstructurecalcu-NoteslationsrevealedhowthehomogeneousmixingofmoleculesTheauthorsdeclarenocompeting?nancialinterest.leadtomixingofstates,whichinturnleadstoloweringofthebandgaps.X-rayoccupancyre?nementstrategiesestablishedin■REFERENCESthisstudytoobtainaccuratecompositionsmaybegenerally(1)Bondesgaard,M.;Broge,N.L.N.;Mamakhel,A.;Bremholm,applicabletomodelcrystalstructuresofmolecularsolidM.;Iversen,B.B.GeneralSolvothermalSynthesisMethodforsolutions.Theoriginofthesystematic,nonlinearvariationsinCompleteSolubilityRangeBimetallicandHigh-EntropyAlloytheopticalbandgapswithcompositionsneedtobeinvestigatedNanocatalysts.Adv.Funct.Mater.2019,29,1905933.further.Ourstudysuggeststhatalloyformationmaybeapplied(2)George,E.P.;Raabe,D.;Ritchie,R.O.High-entropyalloys.Nat.toawiderrangeofmolecularcrystals,includingtheorganicRev.Mater.2019,4,515?534.optoelectronicmaterialscomposedofsulfurandselenium(3)West,A.R.SolidStateChemistryandItsApplications;JohnWileycompoundsexhibitingweakchalcogenbondsasacrystal&Sons:2014.(4)Chen,S.;Shang,R.;Wang,B.-W.;Wang,Z.-M.;Gao,S.AnA-engineeringstrategyforbandgaptuning.AlthoughthecrystalsSiteMixed-AmmoniumSolidSolutionPerovskiteSeriesofanalyzedinthisstudyshowednosigni?cantphotophysical[(NH2NH3)x(CH3NH3)1?x][Mn(HCOO)3](x=1.00?0.67).properties,ourongoingworkonorganiclight-emittingdiodeAngew.Chem.,Int.Ed.2015,54,11093?11096.(OLED)materialsshowsthatthemolecularalloystrategycan(5)Wang,F.;Kusada,K.;Wu,D.;Yamamoto,T.;Toriyama,T.;bee?ectivelyemployedtotune?uorescenceemissionMatsumura,S.;Nanba,Y.;Koyama,M.;Kitagawa,H.Solid-Solutionproperties.AlloyNanoparticlesoftheImmiscibleIridium?CopperSystemwitha3063https://doi.org/10.1021/acs.jpclett.1c00614J.Phys.Chem.Lett.2021,12,3059?3065

5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterWideCompositionRangeforEnhancedElectrocatalyticApplications.solutionwithpiezoelectricitystrongerthanleadzirconatetitanate.Angew.Chem.,Int.Ed.2018,57,4505?4509.Science2019,363,1206.(6)Ning,C.-Z.;Dou,L.;Yang,P.Bandgapengineeringin(26)Adams,C.J.;Haddow,M.F.;Lusi,M.;Orpen,A.G.Crystalsemiconductoralloynanomaterialswithwidelytunablecompositions.engineeringoflatticemetricsofperhalometallatesaltsandMOFs.Nat.Rev.Mater.2017,2,17070.Proc.Natl.Acad.Sci.U.S.A.2010,107,16033.(7)Lusi,M.EngineeringCrystalPropertiesthroughSolidSolutions.(27)Dou,J.-H.;Yu,Z.-A.;Zhang,J.;Zheng,Y.-Q.;Yao,Z.-F.;Tu,Cryst.GrowthDes.2018,18,3704?3712.Z.;Wang,X.;Huang,S.;Liu,C.;Sun,J.;Yi,Y.;Cao,X.;Gao,Y.;(8)Lusi,M.Aroughguidetomolecularsolidsolutions:design,Wang,J.-Y.;Pei,J.OrganicSemiconductingAlloyswithTunablesynthesisandcharacterizationofmixedcrystals.CrystEngComm2018,EnergyLevels.J.Am.Chem.Soc.2019,141,6561?6568.20,7042?7052.(28)Cavallo,G.;Metrangolo,P.;Milani,R.;Pilati,T.;Priimagi,A.;(9)Desiraju,G.R.CrystalEngineering:FromMoleculetoCrystal.J.Resnati,G.;Terraneo,G.TheHalogenBond.Chem.Rev.2016,116,Am.Chem.Soc.2013,135,9952?9967.2478?2601.(10)Natarajan,R.;Magro,G.;Bridgland,L.N.;Sirikulkajorn,A.;(29)Priimagi,A.;Cavallo,G.;Metrangolo,P.;Resnati,G.TheNarayanan,S.;Ryan,L.E.;Haddow,M.F.;Orpen,A.G.;Charmant,HalogenBondintheDesignofFunctionalSupramolecularMaterials:J.P.H.;Hudson,A.J.;Davis,A.P.NanoporousOrganicAlloys.RecentAdvances.Acc.Chem.Res.2013,46,2686?2695.Angew.Chem.,Int.Ed.2011,50,11386?11390.(30)Politzer,P.;Murray,J.S.;Clark,T.Halogenbondingandother(11)Hasell,T.;Chong,S.Y.;Schmidtmann,M.;Adams,D.J.;σ-holeinteractions:aperspective.Phys.Chem.Chem.Phys.2013,15,Cooper,A.I.PorousOrganicAlloys.Angew.Chem.,Int.Ed.2012,51,11178?11189.7154?7157.(31)Politzer,P.;Murray,J.S.;Clark,T.Halogenbonding:an(12)Liu,S.-Y.;Zhou,D.-D.;He,C.-T.;Liao,P.-Q.;Cheng,X.-N.;electrostatically-drivenhighlydirectionalnoncovalentinteraction.Xu,Y.-T.;Ye,J.-W.;Zhang,J.-P.;Chen,X.-M.Flexible,LuminescentPhys.Chem.Chem.Phys.2010,12,7748?7757.Metal?OrganicFrameworksShowingSynergisticSolid-Solution(32)Scilabra,P.;Terraneo,G.;Resnati,G.TheChalcogenBondinEffectsonPorosityandSensitivity.Angew.Chem.,Int.Ed.2016,55,CrystallineSolids:AWorldParalleltoHalogenBond.Acc.Chem.Res.2019,52,1313?1324.16021?16025.(33)Huynh,H.-T.;Jeannin,O.;Fourmigué,M.Organic(13)Panda,T.;Horike,S.;Hagi,K.;Ogiwara,N.;Kadota,K.;selenocyanatesasstronganddirectionalchalcogenbonddonorsforItakura,T.;Tsujimoto,M.;Kitagawa,S.MechanicalAlloyingofcrystalengineering.Chem.Commun.2017,53,8467?8469.Metal?OrganicFrameworks.Angew.Chem.,Int.Ed.2017,56,2413?(34)Thomas,S.P.;Satheeshkumar,K.;Mugesh,G.;GuruRow,T.2417.N.UnusuallyShortChalcogenBondsInvolvingOrganoselenium:(14)Etemad,S.;Engler,E.M.;Schultz,T.D.;Penney,T.;Scott,B.InsightsintotheSe?NBondCleavageMechanismoftheAntioxidantA.Organicalloys(TSeF)x(TTF)(1?x)TCNQ-structure,conductivity,EbselenandAnalogues.Chem.-Eur.J.2015,21,6793?6800.andphasetransitions.Phys.Rev.B:Condens.MatterMater.Phys.1978,(35)Pascoe,D.J.;Ling,K.B.;Cockroft,S.L.TheOriginof17,513?528.Chalcogen-BondingInteractions.J.Am.Chem.Soc.2017,139,(15)Wiscons,R.A.;Coropceanu,V.;Matzger,A.J.Quaternary15160?15167.Charge-TransferSolidSolutions:ElectronicTunabilitythrough(36)Thomas,S.P.;Kumar,V.;Alhameedi,K.;GuruRow,T.N.Stoichiometry.Chem.Mater.2019,31,6598?6604.Non-ClassicalSynthons:SupramolecularRecognitionbyS···O(16)Dabros,M.;Emery,P.R.;Thalladi,V.R.ASupramolecularChalcogenBondinginMolecularComplexesofRiluzole.Chem.-ApproachtoOrganicAlloys:CocrystalsandThree-andFour-Eur.J.2019,25,3591?3597.ComponentSolidSolutionsof1,4-Diazabicyclo[2.2.2]octaneand4-(37)Brezgunova,M.E.;Lieffrig,J.;Aubert,E.;Dahaoui,S.;Fertey,X-Phenols(X=Cl,CH3,Br).Angew.Chem.,Int.Ed.2007,46,4132?P.;Lebegue,S.;A??ngyán,J.G.;Fourmigué,M.;Espinosa,E.Chalcogen4135.Bonding:ExperimentalandTheoreticalDeterminationsfrom(17)Reddy,D.S.;Craig,D.C.;Desiraju,G.R.Organicalloys:ElectronDensityAnalysis.GeometricalPreferencesDrivenbydiamondoidnetworksincrystallinecomplexesof1,3,5,7-tetrabro-Electrophilic?NucleophilicInteractions.Cryst.GrowthDes.2013,moadamantane,hexamethylenetetramineandcarbontetrabromide.J.13,3283?3289.Chem.Soc.,Chem.Commun.1994,12,1457?1458.(38)Kasai,H.;Tolborg,K.;Sist,M.;Zhang,J.;Hathwar,V.R.;(18)Thomas,S.P.;Sathishkumar,R.;GuruRow,T.N.OrganicFils?,M.?.;Cenedese,S.;Sugimoto,K.;Overgaard,J.;Nishibori,E.;alloysofroomtemperatureliquidsthiophenolandselenophenol.Iversen,B.B.X-rayelectrondensityinvestigationofchemicalbondingChem.Commun.2015,51,14255?14258.invanderWaalsmaterials.Nat.Mater.2018,17,249?252.(19)Paul,M.;Chakraborty,S.;Desiraju,G.R.Six-Component(39)Fuller,A.L.;Scott-Hayward,L.A.S.;Li,Y.;Bu?hl,M.;Slawin,MolecularSolids:ABC[D1?(x+y)ExFy]2.J.Am.Chem.Soc.2018,140,A.M.Z.;Woollins,J.D.AutomatedChemicalCrystallography.J.Am.2309?2315.Chem.Soc.2010,132,5799?5802.(20)Chakraborty,S.;Joseph,S.;Desiraju,G.R.ProbingtheCrystal(40)Turner,M.J.;Grabowsky,S.;Jayatilaka,D.;Spackman,M.A.StructureLandscapebyDoping:4-Bromo,4-Chloro,and4-AccurateandEfficientModelEnergiesforExploringIntermolecularMethylcinnamicAcids.Angew.Chem.,Int.Ed.2018,57,9279?9283.InteractionsinMolecularCrystals.J.Phys.Chem.Lett.2014,5,4249?(21)Pramanik,T.;Pavan,M.S.;GuruRow,T.N.Dohalogen4255.bondsdictatethepackingpreferencesinsolidsolutions?Faraday(41)Mackenzie,C.F.;Spackman,P.R.;Jayatilaka,D.;Spackman,Discuss.2017,203,201?212.M.A.CrystalExplorermodelenergiesandenergyframeworks:(22)Oliveira,M.A.;Peterson,M.L.;Klein,D.Continuouslyextensiontometalcoordinationcompounds,organicsalts,solvatesSubstitutedSolidSolutionsofOrganicCo-Crystals.Cryst.GrowthDes.andopen-shellsystems.IUCrJ.2017,4,575?587.2008,8,4487?4493.(42)Turner,M.J.;Thomas,S.P.;Shi,M.W.;Jayatilaka,D.;(23)Mishra,M.K.;Ramamurty,U.;Desiraju,G.R.SolidSolutionSpackman,M.A.Energyframeworks:insightsintointeractionHardeningofMolecularCrystals:TautomericPolymorphsofanisotropyandthemechanicalpropertiesofmolecularcrystals.Omeprazole.J.Am.Chem.Soc.2015,137,1794?1797.Chem.Commun.2015,51,3735?3738.(24)Schwarze,M.;Tress,W.;Beyer,B.;Gao,F.;Scholz,R.;(43)Thomas,S.P.;Shi,M.W.;Koutsantonis,G.A.;Jayatilaka,D.;Poelking,C.;Ortstein,K.;Gu?nther,A.A.;Kasemann,D.;Andrienko,Edwards,A.J.;Spackman,M.A.TheElusiveStructuralOriginofD.;Leo,K.Bandstructureengineeringinorganicsemiconductors.PlasticBendinginDimethylSulfoneCrystalswithQuasi-isotropicScience2016,352,1446.CrystalPacking.Angew.Chem.,Int.Ed.2017,56,8468?8472.(25)Liao,W.-Q.;Zhao,D.;Tang,Y.-Y.;Zhang,Y.;Li,P.-F.;Shi,P.-(44)Mackenzie,C.F.;Spackman,P.R.;Jayatilaka,D.;Spackman,P.;Chen,X.-G.;You,Y.-M.;Xiong,R.-G.AmolecularperovskitesolidM.A.CrystalExplorermodelenergiesandenergyframeworks:3064https://doi.org/10.1021/acs.jpclett.1c00614J.Phys.Chem.Lett.2021,12,3059?3065

6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterextensiontometalcoordinationcompounds,organicsalts,solvatesandopen-shellsystems.IUCrJ.2017,4,575?587.(45)Vegard,L.DieKonstitutionderMischkristalleunddieRaumfu?llungderAtome.Eur.Phys.J.A1921,5,17?26.(46)Denton,A.R.;Ashcroft,N.W.Vegard’slaw.Phys.Rev.A:At.,Mol.,Opt.Phys.1991,43,3161.(47)Parkin,G.Bond-stretchisomerismintransitionmetalcomplexes:areevaluationofcrystallographicdata.Chem.Rev.1993,93,887?911.(48)Yoon,K.;Parkin,G.;Rheingold,A.L.Bond-stretchisomerisminthechlorooxomolybdenumcomplexescis-mer-MoOCl2(PR3)3:areinvestigation.J.Am.Chem.Soc.1992,114,2210?2218.(49)Tauc,J.OpticalpropertiesandelectronicstructureofamorphousGeandSi.Mater.Res.Bull.1968,3,37?46.(50)Nobbs,J.H.KubelkaMunktheoryandthepredictionofreflectance.Rev.Prog.Color.Relat.Top.1985,15,66?75.(51)Avilés,M.A.;Córdoba,J.M.;Sayagués,M.J.;Gotor,F.J.TailoringtheBandGapintheZnS/ZnSeSystem:SolidSolutionsbyaMechanicallyInducedSelf-SustainingReaction.Inorg.Chem.2019,58,2565?2575.(52)Li,Y.;Deng,R.;Yao,B.;Xing,G.;Wang,D.;Wu,T.TuningferromagnetisminMgxZn1?xOthinfilmsbybandgapanddefectengineering.Appl.Phys.Lett.2010,97,102506?102506.(53)AminorroayaYamini,S.;Patterson,V.;Santos,R.Band-GapNonlinearityinLeadChalcogenide(PbQ,Q=Te,Se,S)Alloys.ACSOmega2017,2,3417?3423.(54)Wu,J.;Walukiewicz,W.;Yu,K.M.;Ager,J.W.;Haller,E.E.;Lu,H.;Schaff,W.J.SmallbandgapbowinginIn1?xGaxNalloys.Appl.Phys.Lett.2002,80,4741?4743.(55)Wu,J.;Walukiewicz,W.;Yu,K.M.;Ager,J.W.;Li,S.X.;Haller,E.E.;Lu,H.;Schaff,W.J.Universalbandgapbowingingroup-IIInitridealloys.SolidStateCommun.2003,127,411?414.3065https://doi.org/10.1021/acs.jpclett.1c00614J.Phys.Chem.Lett.2021,12,3059?3065

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。
大家都在看
近期熱門
關(guān)閉