資源描述:
《E ffi cient External Energy Transfer from Mn-Doped Perovskite Nanocrystals - Wang et al. - 2021 - Unknown》由會(huì)員上傳分享,免費(fèi)在線(xiàn)閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
pubs.acs.org/JPCLLetterE?cientExternalEnergyTransferfromMn-DopedPerovskiteNanocrystalsShipingWang,JingLeng,*QiSun,ChunyiZhao,andShengyeJin*CiteThis:J.Phys.Chem.Lett.2021,12,1475?1480ReadOnlineACCESSMetrics&MoreArticleRecommendations*s?SupportingInformationABSTRACT:Dopingwithatransitionmetalisane?ectivewaytotunetheopticalpropertiesofsemiconductornanocrystals(NCs).Theexcitationoftransition-metaldopantsinNCsisthroughaninternalenergytransferfromahostexciton,bywhichtheshort-livedexcitonenergycanbe“stored”atthedopantforasigni?cantlylongerlifetime.Herein,usingMn-dopedCsPbCl3perovskiteNCsasanexample,wereportthatthelong-livedexcitedstateatMndopantscanbee?cientlyextractedfromtheNCsthroughanexternalenergytransfer(EET)torhodamineB(RhB)moleculesadsorbedontheNCsurface.TheEETprocessleadstoadelayedRhBemission.TheEETrateisfoundtoincreasefrom0.16to1.42ms?1asthenumberofRhBmoleculesadsorbedperNCincreasesfrom1to8.9,leadingtoenergyextractione?ciencyupto71%.ThisworksuggeststhepotentialofMn-dopedperovskiteNCsforapplicationsinphotonenergyconversionandbiologicalimaging.energyatMn2+dopantscanbereadilyrealizedwithoutrganicorinorganicleadhalideperovskite(APbX3,AisOtheorganicorinorganiccationsandX=Cl,Br,I)competingwiththefastexcitonrecombination.Previousnanocrystals(NCs)haveattractedgreatinterestfortheirreportshavefoundthatinMn-dopedZnSNCs,theexcitedpotentialapplicationinlight-emittingdiodes(LEDs),lasing,stateatMndopantscantransfertotheadsorbedorganicdyes1?4throughane?cientexternalenergy-transfer(EET)proc-andsolarcells.Thisclassofnanomaterialsexhibitsmany27,28excellentphotophysicalproperties,suchasbroadabsorptioness.AsimilarEETprocessisalsoexpectedinMn-dopedspectra,tunablebandgapemission,narrowline-width,andperovskiteNCs;however,theenergy-transferrateandhighphotoluminescence(PL)quantumyield(QY).5?7e?ciencyremainsunknown.Moreover,dopinghomo-andheterovalentionsintoaHerein,wereportaninvestigationontheEETdynamicsfromexcited-stateMn2+inMn-dopedCsPbClperovskiteNCsperovskitestructuretoformalloysemiconductorsisfoundto3beane?ectivewaytotunetheopticalpropertiesofperovskitetotheadsorbedrhodamineB(RhB)molecules.Weshowthat,8?11throughaFo?rsterEETprocess,theexcited-stateMn2+energyDownloadedviaUNIVOFCONNECTICUTonMay16,2021at08:51:16(UTC).NCs.Forexample,manyreportshavedemonstratedthesuccessfuldopingofMn2+ionsinCsPbXNCsbyreplacingcanbedirectlytransferredtoRhBwithtransferratesfrom0.163?1thePb2+ionsinthelattice.12?18InsuchMn-dopedperovskiteto1.42ms,varyingwiththenumberofadsorbedRhBSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.NCs,theexcitonenergyintheperovskitehostcantransfertomoleculesperNCparticle.TheenergyextractionyieldisuptoMn2+ionsthroughane?cientandultrafastinternalenergy->71%,indicatinge?cientlightharvestingandphotonenergytransfer(IET)process,19?21leadingtothedual-coloremissionutilizationofMn-dopedperovskiteNCsforpotentiallight-frombothhostexcitonsandMn2+dopants.Thisuniqueopticalconversionapplications.CsPbClNCsandMn2+-dopedCsPbClNCswerepropertymakesMn-dopedperovskiteNCsapromising33synthesizedbyusingamodi?edhot-injectionprocedurecandidateforcolor-tunableLEDsandsolarconcentrator618,22,23reportedpreviously.Theexperimentaldetailsaboutmaterialapplications.2+preparationareprovidedintheSupportingInformation.TheItisknownthattheMnemissioninMn-dopedNCs462+as-preparedNCstypicallyexhibitcube-likeshapes(Figures1aoriginatesfromtheT1toA1transitionofMn.Becauseof46andS1)withanaveragesidelengthof~8nm.Thehigh-theforbiddentransitionofT1toA1,theexcited-statelifetime2+12,24?26atMnisusuallyonamillisecondtimescale,afewordersmagnitudelongerthanthatofhostexcitons(ontheReceived:January4,2021nanosecondtimescale).Thislong-livedexcitedstateofMn2+Accepted:January26,2021makesMn-dopedperovskiteNCsapotentialenergyreservoir,Published:February2,2021wheretheshort-livedexcitonenergycanbe“stored”atMndopantsandexistforasigni?cantlylongerperiodoftime,andthenthefurtherextractionandutilizationofthe“stored”?2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.1c000171475J.Phys.Chem.Lett.2021,12,1475?1480
1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure1.(a)TEMandHRTEM(inset)imagesofMn-dopedCsPbCl3NCs.(b)UV?visabsorptionspectraofundopedandMn-dopedCsPbCl3NCs,Mn-dopedCsPbCl3NC?RhBcomplexes,andRhB?ethanolsolutions.(c)PLspectraofMn-dopedCsPbCl3NCswithandwithoutRhBunderexcitationat360nm,whereonlytheCsPbCl3NCscanbeexcited.ThePLspectrumfromMn-dopedNC?RhBcanbedecomposedintoMn2+andRhBemissions(grayline).ThearrowsindicatethedeceaseofMn2+andemergenceofRhBemissioninthePLspectrumofMn-dopedNC?RhB.(d)ComparisonofPLspectrafromRhB?ethanolsolution(black),undopedCsPbCl3NC?RhBcomplex(red),andMn-dopedCsPbCl3NC?RhBcomplex(blue)withthesameRhBabsorptionintensityunder360nmexcitation,showingthatonlyMn-dopedCsPbCl3NC?RhBexhibitsMn2+andRhBemissionundertheexcitationat360nm.resolutiontransmissionelectronmicroscopy(HRTEM)indicatesthenumberofadsorbedRhBmoleculesperNC(Figure1a,inset)andpowderX-raydi?raction(XRD)(Figureparticleandcanbecontrolledbytheshakingtime.S2)datademonstratethatbothMn-dopedandundopedNCsWe?rstcomparethePLspectraofMn-dopedCsPbCl3NCsarehighlycrystalline.TheinductivecoupledplasmamasswithandwithoutadsorbedRhBmoleculesundertheexcitationspectrometry(ICP-MS)measurementshowsthatthedopingat360nm(Figure1c).ComparedtotheundopedNCs(seeratioofMn2+is~4%relativetoPb2+.FigureS3foritsPLspectrum),Mn-dopedNCsexhibitastrongMn2+dopantemissionat~600nm.ForNCswithRhBToexaminetheEETprocessfromMn-dopedCsPbCl3NCs,Mn-dopedNCswithRhBmoleculesadsorbedontheNC(Mn-dopedNC?RhB),theirPLspectrumbecomesasym-metricbecauseoftheappearanceofPLpeakonthebluesidesurfacewerepreparedbyaddingRhBpowdertoaMn-dopedofMn2+emission.WeattributedthischangeofspectratotheCsPbCl3NCsolutioninhexane.Themixturesolutionwas?rstRhBemissionforMn-dopedNC?RhBsamplebyshowingthatshakenfortensofsecondsandthen?ltratedtoremovethethePLofMn-dopedNC?RhBcanbenicelydecomposedintoundissolvedRhB.BecauseRhBisalmostinsolubleinhexane,2+MnandRhBemissionspectra(Figure1c).BecausetheNCsRhBmoleculesdissolvedinthehexanesolutionarebelievedtowithandwithoutRhBarecomparedunderthesameNCbeadsorbedtotheNCs.TheamountofadsorbedRhBconcentration,thespectralchangeinFigure1cbetweenthemoleculescanbecontrolledbythemixingtimeandthe2+twosamplesindicatesadecreaseofMnemissioninamountofRhBaddedtotheNCsolution.Figure1bshowstheconjunctionwithagenerationofRhBemissionaftertheUV?visabsorptionspectraofundopedandMn-dopedNCsadsorptionofRhBmolecules.BecausetheRhBmoleculeisandMn-dopedNC?RhBsolutions.Theslightblueshiftofhardlyexcitedat360nm(Figure1b),thedatainFigure1c~12nmbetweenthemisduetothechangeof?nelatticesuggestsanEETprocessfromNCtoRhBinMn-dopedNC?2+29,30structureinducedbyMndoping.FortheMn-dopedRhB,thusresultingintheemissionofRhB.TheEETcanNC?RhB,anadditionalabsorptionpeakat560nmistheoccurfromeitherNChostexcitonsortheMn2+dopants.characteristicabsorptionofRhBmolecules,whoseintensityHowever,energytransferfromexcitontoRhBisprincipally1476https://dx.doi.org/10.1021/acs.jpclett.1c00017J.Phys.Chem.Lett.2021,12,1475?1480
2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterine?cientbecauseofthelackofspectraloverlapbetweenhostworksfoundthattheIETprocesskIEToccurredonthenstopsexcitonemission(at400nm)andRhBabsorption(Figure1b).timescalethroughatrap-mediatedtransfermecha-20,24,35,36WethenfurthercomparethePLspectra(Figure1d)ofMn-nism.AftertheadsorptionofRhBmolecules,thedopedNC?RhB,undopedNC?RhB,andRhB?ethanolenergytransferfromMndopantstoadsorbedRhBmoleculessolutionwiththesameamountofRhBconcentration(seecanresultinafasterPLdecayofMndopantsandmeanwhileFigureS4fortheirabsorptionspectra).TheresultshowsthatthegenerationofRhBPLwithanintrinsicdecayrateofkRhB.undertheexcitationat360nmthePLintensityofRhBfromTheEETshouldoccuronthesametimescaleastheintrinsicexcitedMn2+lifetime,andthemeasuredEETrate(k)undopedNC?RhBandRhB?ethanolsolutionarenegligibleEETrelativetothatfromMn-dopedNC?RhB,verifyingthatthedependsonthenumberofadsorbedRhBmolecules(n)peremissionofRhBinMn-dopedNC?RhBisaresultofEETNC(kEET=nk′EET;k′EETistheratewhenn=1).InthecasefromexcitedMn2+,ratherthanfromthedirectexcitationofthattheinternalexciton-to-dopantenergy-transferrate(kIET)RhBortheenergytransferfromthehostexciton.WealsoismuchlargerthanthedecayrateofexcitedMndopant(kMn+k),thedecaykineticsoftheexcited-stateMn2+andRhBcanexcludedtheenergytransferfromMn2+tothetripletstateofEETbederivedas(seetheSupportingInformationfordetailedRhB.ForRhBmolecules,theenergylevelofthesingletstateis31derivation).higherthanthetripletstateby~370meV.ThismeansthatiftheEETistothetripletstateofRhB,themoleculecannot[Mn(t)*]=[Mn*]e?+()kktEETMn0(1)transfertothesingletstateatroomtemperature,andthus,nosingletRhBPLshouldbeobserved.[RhB()*]t=kEET[*Mn]0(e?+()kktEETMn?e?ktRhB)TheEETkineticsinMn-dopedNC?RhBcanbekkk??RhBEETMninvestigatedbythemeasurementoftime-resolvedPL(2)(TRPL)kineticsinMn-dopedNCsbeforeandaftertheRhB2+where[Mn*]([RhB*])isthedensityofexcitedMndopantsadsorption.TheschematicdiagraminFigure2ashowsthe(RhBmolecules)atadelaytimet,and[Mn*]0isthedensityofexcitondecayandtransferprocessesinMn-dopedNC?RhB.2+excitedMnrightafterthefastIETprocess.TheRhBPLTheIETprocessfromhostexcitontoMndopantshasbeen19,20,32?34lifetime(1/kRhB)ismeasuredtobe~1.1ns(FigureS5),whichextensivelystudiedpreviously,andourandothers’meansthatkRhB?(kEET+kMn).Equation2canthereforebesimpli?edas[*RhB()]≈tkEET[*Mn]0e?+()kktEETMnkkkRhB??EETMnkEET≈[*Mn()]tkRhB(3)Equation3indicatesthatinMn-dopedNC?RhB,theexcited-stateRhBandMn2+dopantshouldexhibitsimilardecaykinetics.ThisisbecausethatforRhBmoleculesadsorbedonNC,theiremissionislimitedbytheexcitationthroughEET.Figure2bshowsasetofTRPLplotsfromMn-dopedNC?RhBcollectedatvariousemissionwavelengthsfrom550to670nm.BecauseoftheEETfromMndopanttoRhB,thesekineticsareallfaster(~0.66ms)thanthatfromMn-dopedperovskiteNCswithoutRhB(~1.72ms).Consistentwitheq3,theTRPLplotscollectedatdi?erentwavelengthsfromMn-dopedNC?RhBshowverysimilardecaykinetics,althoughtheexaminedspectralregioncontainsvariablecontributionsfrombothMndopantsandadsorbedRhBmolecules.ThemeasuredEETrateinMn-dopedNC?RhBcanbetunedbychangingthenumber(n)ofadsorbedRhBmoleculesperNC(kEET=nk′EET).Figure3ashowstheabsorptionspectraof?veMn-dopedNC?RhBsamples(nos.1?5)withdi?erentamountofRhBmolecules.BycomparingtheabsorptionintensityofNCandRhB,theaveragenumberofadsorbedRhBperNCforthesesamplesisfoundtoincreasefromn=1.0ton=8.9forsample1to5(seetheSupportingInformationforthecalculationofn).TheirPLspectra(normalizedat405nm)exhibitaclearblue-shiftwiththeincreaseofRhBadsorption(Figure3b),whichisattributedtoFigure2.(a)Schematicdiagramofenergy-transferprocessinMn-theenhanced(reduced)RhB(Mndopant)emissionbecausedopedCsPbCl3NC?RhBsample.kIETandkEETaretheinternalandofthefasterEET.externalenergy-transferrates,respectively;khost,kMn,andkRhBaretheintrinsicdecayratesofhostexciton,excited-stateMn2+,andRhB.(b)ToquantifytheEETratesandtheenergy-transferComparisonofthePLdecaykineticscollectedatdi?erente?ciencies(η),wecomparedthePLdecaykineticsoftheexcitedMn2+dopantsfromMn-dopedNC?RhBsampleswithwavelengthsinMn-dopedNC?RhBandthePLdecaykineticsprobedat600nminMn-dopedNCswithoutRhB.di?erentamountofadsorbedRhBmolecules(Figure3c).1477https://dx.doi.org/10.1021/acs.jpclett.1c00017J.Phys.Chem.Lett.2021,12,1475?1480
3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure3.(a)UV?visabsorptionand(b)PLspectraof?vesets(nos.1?5)ofMn-dopedCsPbCl3NC?RhBsampleswithdi?erentamountsofadsorbedRhBmolecules.TheexcitationforPLisat360nm.Thenumbersinparenthesesrepresenttheaveragenumber(nRhB)ofadsorbedRhBperNCintheirsamples.(c)ComparisonofPLdecaykineticscollectedat600nminsamples1?5andthePLdecayinMn-dopedNCswithoutRhB.Solidlinesaresingle-exponential?tstothesekinetics.(d)CalculatedEETratesandenergy-transfere?cienciesasafunctionofnRhB.ThesekineticsexhibitacceleratedrelaxationofexcitedMnTheaboveresultshowsthattheintrinsicEETrate(fornRhBdopantbecauseofthefasterEETprocessasthenumberof=1)fromMndopanttoRhBissigni?cantlysmallerthantheadsorbedRhBincreases.Thesekineticsare?ttedbyanenergytransferdirectlyfromexcitontomolecularacceptorasexponentialfunctiontodeterminetheMn-dopantlifetimereportedinothersemiconductorNCs(e.g.,inII?VI(τMn?RhB=1/(kMn+kEET))aftertheadsorptionofRhB(TablesemiconductorandhalideperovskiteNC?organicdyeS1).ThekEETandηvaluescanthenbecalculatedbycomplexes,withanEETtimeonthepicosecondto37?4111nanosecondtimescale).ThisisbecauseoftheweakkEET=?transitiondipolemomentofMndopantthatleadstoaweakττMnRhB?Mn(4)dipole?dipolecouplingbetweendonorandacceptor.TheEETkτtimeonthemillisecondtimescaleinMn-dopedperovskiteη=EET=?1MnRhB?27NCsisconsistentwiththatfoundinMn-dopedZnSNCskkEET+MnτMn(5)andLa-dopedNCs42,43withorganicdyesasacceptors,andawhereτ(=1/k)isthelifetimeofexcitedMn2+withoutsimilarEETprocessshouldalsooccurinothertransition-MnMnRhB.GivenτMn=1.72ms,thekEET(η)isfoundtobe0.08metal-dopedperovskiteNCs.Nevertheless,ane?cientEETms?1(12%)forn=1andincreasesto1.42ms?1(71%)forn=canberealizedbyincreasingthenumberofmolecular8.9(seeTableS1).Figure3dplotsthemeasuredkEETandηacceptors,anda71%e?ciencyrepresentsane?ectiveenergyvaluesasafunctionoftheaveragenumber(nRhB)ofadsorbedextractionfromMn-dopedNCs,suggestingtheirpotentialRhBperNC.ItisfoundthatthemeasuredEETrateincreasesapplicationsforphotonenergyconversion.linearlywiththeincreaseofnRhB,andfromtheslopeoftheplotAnotherinterestingobservationinthisworkistheslowPLtheintrinsicEETrate(fornRhB=1)forMn-dopedNC?RhBdecayofRhBmoleculesadsorbedonMn-dopedNCs.Thisisdeterminedtobe~0.16ms?1.BecausetheFo?rsterenergyresultprovidesamethodtogeneratePLsignalsfromadyetransferishighlydependentonthedonor?acceptordistance,moleculewithanapparentlifetimeafewordersofmagnitudethemeasuredintrinsicEETratecanbetunedbythesizeofthelongerthanitsintrinsicvalue.ThispropertylikelymakesMn-perovskiteNCsandcanbefurtherimprovedbydecreasingthedopedNCs?RhB(ortransition-metal-dopedNCswithotherNCsize.dyemolecules)apotentialcandidatefordelayed?uorescence1478https://dx.doi.org/10.1021/acs.jpclett.1c00017J.Phys.Chem.Lett.2021,12,1475?1480
4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterbiologicalimagingwithoutusingadyemoleculewithhttps://pubs.acs.org/10.1021/acs.jpclett.1c00017intrinsicallylongPLlifetimes.Insummary,wehaveinvestigatedtheexternalenergyNotesextractionprocessfromMn-dopedCsPbCl3perovskiteNCstoTheauthorsdeclarenocompeting?nancialinterest.adsorbedRhBmolecules.TheEETprocessiscon?rmedtobefromtheexcited-stateMn2+inMn-dopedNCstotheadsorbed■ACKNOWLEDGMENTSRhBmoleculesbytheobservationofRhBemissionundertheS.J.acknowledges?nancialsupportfromtheMOSTexcitationofonlyMn-dopedNCs.BecausetheEETprocessis(2018YFA0208704and2016YFA0200602)andtheNationalmuchslowerthantheintrinsicPLdecayofRhB,theadsorbedNatureScienceFoundationofChina(21725305).J.L.RhBmoleculesonMn-dopedNCsexhibitadelayedPLacknowledges?nancialsupportfromtheNationalNaturallifetimeonthemillisecondtimescale.TheEETratecanbeScienceFoundationofChina(21773237and22073098).tunedfrom0.16to1.42ms?1asthenumberofRhBmoleculesadsorbedperNCincreasesfrom1to8.9,andthemaximum■REFERENCESEETratecorrespondstoenergyextractione?ciencyof~71%.(1)Pan,J.;Quan,L.N.;Zhao,Y.;Peng,W.;Murali,B.;Sarmah,S.These?ndingsshedlightontheenergyextractionkineticsP.;Yuan,M.;Sinatra,L.;Alyami,N.M.;Liu,J.;Yassitepe,E.;Yang,fromMn-dopedNCstoexternaldyemoleculesandsuggestZ.;Voznyy,O.;Comin,R.;Hedhili,M.N.;Mohammed,O.F.;Lu,Z.thepotentialofthisclassofmaterialsforapplicationsinlight-H.;Kim,D.H.;Sargent,E.H.;Bakr,O.M.HighlyEfficientconversionandbiologicalimaging.Perovskite-Quantum-DotLight-EmittingDiodesbySurfaceEngineer-ing.Adv.Mater.2016,28,8718?8725.■(2)Yakunin,S.;Protesescu,L.;Krieg,F.;Bodnarchuk,M.I.;ASSOCIATEDCONTENTNedelcu,G.;Humer,M.;DeLuca,G.;Fiebig,M.;Heiss,W.;*s?SupportingInformationKovalenko,M.V.Low-ThresholdAmplifiedSpontaneousEmissionTheSupportingInformationisavailablefreeofchargeatandLasingfromColloidalNanocrystalsofCaesiumLeadHalidehttps://pubs.acs.org/doi/10.1021/acs.jpclett.1c00017.Perovskites.Nat.Commun.2015,6,8056.(3)Akkerman,Q.A.;Gandini,M.;DiStasio,F.;Rastogi,P.;FiguresS1?S7,TablesS1andS2,samplepreparations,Palazon,F.;Bertoni,G.;Ball,J.M.;Prato,M.;Petrozza,A.;Manna,L.EETkineticmodel,andestimationoftheaverageStronglyEmissivePerovskiteNanocrystalInksforHigh-VoltageSolarnumberofadsorbedRhBperNC(PDF)Cells.Nat.Energy2017,2,16194.(4)Liu,P.;Chen,W.;Wang,W.;Xu,B.;Wu,D.;Hao,J.;Cao,W.;■Fang,F.;Li,Y.;Zeng,Y.;Pan,R.;Chen,S.;Cao,W.;Sun,X.W.;AUTHORINFORMATIONWang,K.Halide-RichSynthesizedCesiumLeadBromidePerovskiteCorrespondingAuthorsNanocrystalsforLight-EmittingDiodeswithImprovedPerformance.ShengyeJin?StateKeyLaboratoryofMolecularReactionChem.Mater.2017,29,5168?5173.DynamicsandDynamicsResearchCenterforEnergyand(5)deWeerd,C.;Gomez,L.;Capretti,A.;Lebrun,D.M.;EnvironmentalMaterials,DalianInstituteofChemicalMatsubara,E.;Lin,J.;Ashida,M.;Spoor,F.C.M.;Siebbeles,L.D.A.;Physics,ChineseAcademyofSciences,Dalian116023,Houtepen,A.J.;Suenaga,K.;Fujiwara,Y.;Gregorkiewicz,T.EfficientChina;orcid.org/0000-0003-2001-2212;Email:sjin@CarrierMultiplicationinCsPbI3PerovskiteNanocrystals.Nat.dicp.ac.cnCommun.2018,9,4199.JingLeng?StateKeyLaboratoryofMolecularReaction(6)Protesescu,L.;Yakunin,S.;Bodnarchuk,M.I.;Krieg,F.;DynamicsandDynamicsResearchCenterforEnergyandCaputo,R.;Hendon,C.H.;Yang,R.X.;Walsh,A.;Kovalenko,M.V.NanocrystalsofCesiumLeadHalidePerovskites(CsPbX3,X=Cl,Br,EnvironmentalMaterials,DalianInstituteofChemicalandI):NovelOptoelectronicMaterialsShowingBrightEmissionwithPhysics,ChineseAcademyofSciences,Dalian116023,WideColorGamut.NanoLett.2015,15,3692?3696.China;orcid.org/0000-0002-8454-4835;Email:ljjx@(7)Liu,F.;Zhang,Y.;Ding,C.;Kobayashi,S.;Izuishi,T.;Nakazawa,dicp.ac.cnN.;Toyoda,T.;Ohta,T.;Hayase,S.;Minemoto,T.;Yoshino,K.;Dai,S.;Shen,Q.HighlyLuminescentPhase-StableCsPbI3PerovskiteAuthorsQuantumDotsAchievingNear100%AbsolutePhotoluminescenceShipingWang?StateKeyLaboratoryofMolecularReactionQuantumYield.ACSNano2017,11,10373?10383.DynamicsandDynamicsResearchCenterforEnergyand(8)Yao,J.S.;Ge,J.;Han,B.N.;Wang,K.H.;Yao,H.B.;Yu,H.L.;EnvironmentalMaterials,DalianInstituteofChemicalLi,J.H.;Zhu,B.S.;Song,J.Z.;Chen,C.;Zhang,Q.;Zeng,H.B.;Luo,Y.;Yu,S.H.Ce3+-DopingtoModulatePhotoluminescencePhysics,ChineseAcademyofSciences,Dalian116023,China;UniversityofChineseAcademyofSciences,BeijingKineticsforEfficientCsPbBr3NanocrystalsBasedLight-Emitting100049,ChinaDiodes.J.Am.Chem.Soc.2018,140,3626?3634.QiSun?StateKeyLaboratoryofMolecularReaction(9)Shao,H.;Bai,X.;Cui,H.;Pan,G.;Jing,P.;Qu,S.;Zhu,J.;Zhai,Y.;Dong,B.;Song,H.WhiteLightEmissioninBi3+/Mn2+IonCo-DynamicsandDynamicsResearchCenterforEnergyandDopedCsPbCl3PerovskiteNanocrystals.Nanoscale2018,10,1023?EnvironmentalMaterials,DalianInstituteofChemical1029.Physics,ChineseAcademyofSciences,Dalian116023,(10)Yong,Z.J.;Guo,S.Q.;Ma,J.P.;Zhang,J.Y.;Li,Z.Y.;Chen,China;UniversityofChineseAcademyofSciences,BeijingY.M.;Zhang,B.B.;Zhou,Y.;Shu,J.;Gu,J.L.;Zheng,L.R.;Bakr,O.100049,China;orcid.org/0000-0002-7092-0705M.;Sun,H.T.Doping-EnhancedShort-RangeOrderofPerovskiteChunyiZhao?StateKeyLaboratoryofMolecularReactionNanocrystalsforNear-UnityVioletLuminescenceQuantumYield.J.DynamicsandDynamicsResearchCenterforEnergyandAm.Chem.Soc.2018,140,9942?9951.EnvironmentalMaterials,DalianInstituteofChemical(11)Milstein,T.J.;Kroupa,D.M.;Gamelin,D.R.PicosecondPhysics,ChineseAcademyofSciences,Dalian116023,QuantumCuttingGeneratesPhotoluminescenceQuantumYieldsChina;UniversityofChineseAcademyofSciences,BeijingOver100%inYtterbium-DopedCsPbCl3Nanocrystals.NanoLett.2018,18,3792?3799.100049,China(12)DasAdhikari,S.;Dutta,S.K.;Dutta,A.;Guria,A.K.;Pradhan,Completecontactinformationisavailableat:N.ChemicallyTailoringtheDopantEmissioninManganese-Doped1479https://dx.doi.org/10.1021/acs.jpclett.1c00017J.Phys.Chem.Lett.2021,12,1475?1480
5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterCsPbCl3PerovskiteNanocrystals.Angew.Chem.,Int.Ed.2017,56,(31)Lai,R.;Wu,K.Red-to-BluePhotonUpconversionBasedona8746?8750.TripletEnergyTransferProcessnotRetardedbutEnabledbyShell-(13)Liu,H.;Wu,Z.;Shao,J.;Yao,D.;Gao,H.;Liu,Y.;Yu,W.;CoatedQuantumDots.J.Chem.Phys.2020,153,114701.Zhang,H.;Yang,B.CsPbxMn1?xCl3PerovskiteQuantumDotswith(32)Mir,W.J.;Jagadeeswararao,M.;Das,S.;Nag,A.ColloidalMn-HighMnSubstitutionRatio.ACSNano2017,11,2239?2247.DopedCesiumLeadHalidePerovskiteNanoplatelets.ACSEnergy(14)Liu,W.;Lin,Q.;Li,H.;Wu,K.;Robel,I.;Pietryga,J.M.;Lett.2017,2,537?543.Klimov,V.I.Mn2+-DopedLeadHalidePerovskiteNanocrystalswith(33)Yang,X.;Pu,C.;Qin,H.;Liu,S.;Xu,Z.;Peng,X.Temperature-andMn2+Concentration-DependentEmissionProper-Dual-ColorEmissionControlledbyHalideContent.J.Am.Chem.Soc.tiesofMn2+-DopedZnSeNanocrystals.J.Am.Chem.Soc.2019,141,2016,138,14954?14961.(15)Zou,S.;Liu,Y.;Li,J.;Liu,C.;Feng,R.;Jiang,F.;Li,Y.;Song,2288?2298.(34)Xu,K.;Meijerink,A.TuningExciton-Mn2+EnergyTransferinJ.;Zeng,H.;Hong,M.;Chen,X.StabilizingCesiumLeadHalidePerovskiteLatticethroughMn(II)SubstitutionforAir-StableLight-MixedHalidePerovskiteNanocrystals.Chem.Mater.2018,30,5346?EmittingDiodes.J.Am.Chem.Soc.2017,139,11443?11450.5352.(16)Wang,Q.;Zhang,X.;Jin,Z.;Zhang,J.;Gao,Z.;Li,Y.;Liu,S.F.(35)Luo,B.;Guo,Y.;Li,X.;Xiao,Y.;Huang,X.;Zhang,J.Z.EfficientTrap-MediatedMn2+DopantEmissioninTwoDimensionalEnergy-Down-ShiftCsPbCl3:MnQuantumDotsforBoostingtheEfficiencyandStabilityofPerovskiteSolarCells.ACSEnergyLett.Single-LayeredPerovskite(CH3CH2NH3)2PbBr4.J.Phys.Chem.C2017,2,1479?1486.2019,123,14239?14245.(17)Huang,G.;Wang,C.;Xu,S.;Zong,S.;Lu,J.;Wang,Z.;Lu,C.;(36)Gahlot,K.;KR,P.;Camellini,A.;Sirigu,G.;Cerullo,G.;Cui,Y.PostsyntheticDopingofMnCl2MoleculesintoPreformedZavelani-Rossi,M.;Singh,A.;Waghmare,U.V.;Viswanatha,R.CsPbBr3PerovskiteNanocrystalsviaaHalideExchange-DrivenTransientSpeciesMediatingEnergyTransfertoSpin-ForbiddenMnCationExchange.Adv.Mater.2017,29,1700095.dStatesinII?VISemiconductorQuantumDots.ACSEnergyLett.(18)Chen,D.;Fang,G.;Chen,X.Silica-CoatedMn-Doped2019,4,729?735.CsPb(Cl/Br)3InorganicPerovskiteQuantumDots:Exciton-to-Mn(37)Dworak,L.;Matylitsky,V.V.;Ren,T.;Basché,T.;Wachtveitl,EnergyTransferandBlue-ExcitableSolid-StateLighting.ACSAppl.J.AcceptorConcentrationDependenceofFo?rsterResonanceEnergyMater.Interfaces2017,9,40477?40487.TransferDynamicsinDye?QuantumDotComplexes.J.Phys.Chem.(19)Rossi,D.;Parobek,D.;Dong,Y.;Son,D.H.DynamicsofC2014,118,4396?4402.Exciton?MnEnergyTransferinMn-DopedCsPbCl3Perovskite(38)Clapp,A.R.;Medintz,I.L.;Mauro,J.M.;Fisher,B.R.;Nanocrystals.J.Phys.Chem.C2017,121,17143?17149.Bawendi,M.G.;Mattoussi,H.FluorescenceResonanceEnergy(20)Wang,S.;Leng,J.;Yin,Y.;Liu,J.;Wu,K.;Jin,S.UltrafastTransferbetweenQuantumDotDonorsandDye-LabeledProteinDopant-InducedExcitonAuger-likeRecombinationinMn-DopedAcceptors.J.Am.Chem.Soc.2004,126,301?310.PerovskiteNanocrystals.ACSEnergyLett.2020,5,328?334.(39)Sadhu,S.;Haldar,K.K.;Patra,A.SizeDependentResonance(21)De,A.;Mondal,N.;Samanta,A.LuminescenceTuningandEnergyTransferbetweenSemiconductorQuantumDotsandDyeExcitonDynamicsofMn-DopedCsPbCl3Nanocrystals.NanoscaleUsingFRETandKineticModel.J.Phys.Chem.C2010,114,3891?2017,9,16722?16727.3897.(22)Wu,H.;Xu,S.;Shao,H.;Li,L.;Cui,Y.;Wang,C.Single(40)ShankaraNarayanan,S.;Sinha,S.S.;Verma,P.K.;Pal,S.K.ComponentMn-DopedPerovskite-RelatedCsPb2ClxBr5?xNano-UltrafastEnergyTransferfrom3-MercaptopropionicAcid-CappedplateletswithaRecordWhiteLightQuantumYieldof49%:ANewCdSe/ZnSQDstoDye-LabelledDNA.Chem.Phys.Lett.2008,463,SingleLayerColorConversionMaterialforLight-EmittingDiodes.160?165.(41)Bansal,P.;Kar,P.ProbingtheEnergyTransferProcessbyNanoscale2017,9,16858?16863.(23)Meinardi,F.;Akkerman,Q.A.;Bruni,F.;Park,S.;Mauri,M.;ControllingtheMorphologyofCH3NH3PbBr3NanocrystalswithRhodamineBDye.J.Lumin.2019,215,116609.Dang,Z.;Manna,L.;Brovelli,S.DopedHalidePerovskite(42)Diaz,S.A.;LasarteAragones,G.;Buckhout-White,S.;Qiu,X.;NanocrystalsforReabsorption-FreeLuminescentSolarConcentra-Oh,E.;Susumu,K.;Melinger,J.S.;Huston,A.L.;Hildebrandt,N.;tors.ACSEnergyLett.2017,2,2368?2377.Medintz,I.L.BridgingLanthanidetoQuantumDotEnergyTransfer(24)Pinchetti,V.;Anand,A.;Akkerman,Q.A.;Sciacca,D.;withaShort-LifetimeOrganicDye.J.Phys.Chem.Lett.2017,8,Lorenzon,M.;Meinardi,F.;Fanciulli,M.;Manna,L.;Brovelli,S.2182?2188.Trap-MediatedTwo-StepSensitizationofManganeseDopantsin(43)Di,W.;Li,J.;Shirahata,N.;Sakka,Y.AnEfficientandPerovskiteNanocrystals.ACSEnergyLett.2019,4,85?93.BiocompatibleFluorescenceResonanceEnergyTransferSystem(25)Gan,C.;Zhang,Y.;Battaglia,D.;Peng,X.;Xiao,M.BasedonLanthanide-DopedNanoparticles.Nanotechnology2010,FluorescenceLifetimeofMn-DopedZnSeQuantumDotswithSize21,455703.Dependence.Appl.Phys.Lett.2008,92,241111.(26)Bol,A.A.;Meijerink,A.Long-livedMn2+EmissioninNanocrystallineZnS:Mn2+.Phys.Rev.B:Condens.MatterMater.Phys.1998,58,R15997?R16000.(27)Sarkar,S.;Bose,R.;Jana,S.;Jana,N.R.;Pradhan,N.DopedSemiconductorNanocrystalsandOrganicDyes:AnEfficientandGreenerFRETSystem.J.Phys.Chem.Lett.2010,1,636?640.(28)Emin,S.M.;Sogoshi,N.;Nakabayashi,S.;Fujihara,T.;Dushkin,C.D.KineticsofPhotochromicInducedEnergyTransferbetweenManganese-DopedZinc-SelenideQuantumDotsandSpiropyrans.J.Phys.Chem.C2009,113,3998?4007.(29)Yuan,X.;Ji,S.;DeSiena,M.C.;Fei,L.;Zhao,Z.;Wang,Y.;Li,H.;Zhao,J.;Gamelin,D.R.PhotoluminescenceTemperatureDependence,Dynamics,andQuantumEfficienciesinMn2+-DopedCsPbCl3PerovskiteNanocrystalswithVariedDopantConcentration.Chem.Mater.2017,29,8003?8011.(30)Parobek,D.;Roman,B.J.;Dong,Y.;Jin,H.;Lee,E.;Sheldon,M.;Son,D.H.Exciton-to-DopantEnergyTransferinMn-DopedCesiumLeadHalidePerovskiteNanocrystals.NanoLett.2016,16,7376?7380.1480https://dx.doi.org/10.1021/acs.jpclett.1c00017J.Phys.Chem.Lett.2021,12,1475?1480