高中數(shù)學(xué) 競賽標(biāo)準(zhǔn)教材 第十五章 復(fù)數(shù)【講義】

高中數(shù)學(xué) 競賽標(biāo)準(zhǔn)教材 第十五章 復(fù)數(shù)【講義】

ID:9609147

大?。?25.99 KB

頁數(shù):0頁

時間:2018-05-03

高中數(shù)學(xué) 競賽標(biāo)準(zhǔn)教材 第十五章 復(fù)數(shù)【講義】_第頁
預(yù)覽圖正在加載中,預(yù)計需要20秒,請耐心等待
資源描述:

《高中數(shù)學(xué) 競賽標(biāo)準(zhǔn)教材 第十五章 復(fù)數(shù)【講義】》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在應(yīng)用文檔-天天文庫

1、第十五章復(fù)數(shù)一、基礎(chǔ)知識1.復(fù)數(shù)的定義:設(shè)i為方程x2=-1的根,i稱為虛數(shù)單位,由i與實數(shù)進(jìn)行加、減、乘、除等運算。便產(chǎn)生形如a+bi(a,b∈R)的數(shù),稱為復(fù)數(shù)。所有復(fù)數(shù)構(gòu)成的集合稱復(fù)數(shù)集。通常用C來表示。2.復(fù)數(shù)的幾種形式。對任意復(fù)數(shù)z=a+bi(a,b∈R),a稱實部記作Re(z),b稱虛部記作Im(z).z=ai稱為代數(shù)形式,它由實部、虛部兩部分構(gòu)成;若將(a,b)作為坐標(biāo)平面內(nèi)點的坐標(biāo),那么z與坐標(biāo)平面唯一一個點相對應(yīng),從而可以建立復(fù)數(shù)集與坐標(biāo)平面內(nèi)所有的點構(gòu)成的集合之間的一一映射。因此復(fù)數(shù)可以用點來表示,表示復(fù)數(shù)的平面稱為復(fù)平面,x

2、軸稱為實軸,y軸去掉原點稱為虛軸,點稱為復(fù)數(shù)的幾何形式;如果將(a,b)作為向量的坐標(biāo),復(fù)數(shù)z又對應(yīng)唯一一個向量。因此坐標(biāo)平面內(nèi)的向量也是復(fù)數(shù)的一種表示形式,稱為向量形式;另外設(shè)z對應(yīng)復(fù)平面內(nèi)的點Z,見圖連接OZ,設(shè)∠xOZ=θ,

3、OZ

4、=r,則a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),這種形式叫做三角形式。若z=r(cosθ+isinθ),則θ稱為z的輻角。若0≤θ<2π,則θ稱為z的輻角主值,記作θ=Arg(z).r稱為z的模,也記作

5、z

6、,由勾股定理知

7、z

8、=.如果用eiθ表示cosθ+isinθ,則z=reiθ,

9、稱為復(fù)數(shù)的指數(shù)形式。3.共軛與模,若z=a+bi,(a,b∈R),則a-bi稱為z的共軛復(fù)數(shù)。模與共軛的性質(zhì)有:(1);(2);(3);(4);(5);(6);(7)

10、

11、z1

12、-

13、z2

14、

15、≤

16、z1±z2

17、≤

18、z1

19、+

20、z2

21、;(8)

22、z1+z2

23、2+

24、z1-z2

25、2=2

26、z1

27、2+2

28、z2

29、2;(9)若

30、z

31、=1,則。4.復(fù)數(shù)的運算法則:(1)按代數(shù)形式運算加、減、乘、除運算法則與實數(shù)范圍內(nèi)一致,運算結(jié)果可以通過乘以共軛復(fù)數(shù)將分母分為實數(shù);(2)按向量形式,加、減法滿足平行四邊形和三角形法則;(3)按三角形式,若z1=r1(cosθ1+isinθ

32、1),z2=r2(cosθ2+isinθ2),則z1??z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若[cos(θ1-θ2)+isin(θ1-θ2)],用指數(shù)形式記為z1z2=r1r2ei(θ1+θ2),5.棣莫弗定理:[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ).6.開方:若r(cosθ+isinθ),則,k=0,1,2,…,n-1。7.單位根:若wn=1,則稱w為1的一個n次單位根,簡稱單位根,記Z1=,則全部單位根可表示為1,,.單位根的基本性質(zhì)有(這里記,k=1,2,…,n-1):(1)對任意整數(shù)

33、k,若k=nq+r,q∈Z,0≤r≤n-1,有Znq+r=Zr;(2)對任意整數(shù)m,當(dāng)n≥2時,有=特別1+Z1+Z2+…+Zn-1=0;(3)xn-1+xn-2+…+x+1=(x-Z1)(x-Z2)…(x-Zn-1)=(x-Z1)(x-)…(x-).8.復(fù)數(shù)相等的充要條件:(1)兩個復(fù)數(shù)實部和虛部分別對應(yīng)相等;(2)兩個復(fù)數(shù)的模和輻角主值分別相等。9.復(fù)數(shù)z是實數(shù)的充要條件是z=;z是純虛數(shù)的充要條件是:z+=0(且z≠0).10.代數(shù)基本定理:在復(fù)數(shù)范圍內(nèi),一元n次方程至少有一個根。11.實系數(shù)方程虛根成對定理:實系數(shù)一元n次方程的虛根成對出

34、現(xiàn),即若z=a+bi(b≠0)是方程的一個根,則=a-bi也是一個根。12.若a,b,c∈R,a≠0,則關(guān)于x的方程ax2+bx+c=0,當(dāng)Δ=b2-4ac<0時方程的根為二、方法與例題1.模的應(yīng)用。例1求證:當(dāng)n∈N+時,方程(z+1)2n+(z-1)2n=0只有純虛根。[證明]若z是方程的根,則(z+1)2n=-(z-1)2n,所以

35、(z+1)2n

36、=

37、-(z-1)2n

38、,即

39、z+1

40、2=

41、z-1

42、2,即(z+1)(+1)=(z-1)(-1),化簡得z+=0,又z=0不是方程的根,所以z是純虛數(shù)。例2設(shè)f(z)=z2+az+b,a,b為復(fù)數(shù),

43、對一切

44、z

45、=1,有

46、f(z)

47、=1,求a,b的值。[解]因為4=(1+a+b)+(1-a+b)-(-1+ai+b)-(-1-ai+b)=

48、f(1)+f(-1)-f(i)-f(-i)

49、≥

50、f(1)

51、+

52、f(-1)

53、+

54、f(i)

55、+

56、f(-i)

57、=4,其中等號成立。所以f(1),f(-1),-f(i),-f(-i)四個向量方向相同,且模相等。所以f(1)=f(-1)=-f(i)=-f(-i),解得a=b=0.2.復(fù)數(shù)相等。例3設(shè)λ∈R,若二次方程(1-i)x2+(λ+i)x+1+λi=0有兩個虛根,求λ滿足的充要條件。[解]若方程有實根,則方程組有

58、實根,由方程組得(λ+1)x+λ+1=0.若λ=-1,則方程x2-x+1=0中Δ<0無實根,所以λ≠-1。所以x=-1,λ=2.所以當(dāng)λ

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。