()」的相對誤差為兒求lar的誤差.解ln.r—ln.r*=InIn-—―-—=ln($+l)~<5"*丹TQp?)X*02.設(shè)丿的相對誤至為2%?求〃的相對誤羞.€r(x*)?8SM=ner(x)=0.02刃Ol?利用">
數(shù)值分析課后習(xí)題及答案

數(shù)值分析課后習(xí)題及答案

ID:43876264

大?。?85.53 KB

頁數(shù):14頁

時間:2019-10-16

數(shù)值分析課后習(xí)題及答案_第1頁
數(shù)值分析課后習(xí)題及答案_第2頁
數(shù)值分析課后習(xí)題及答案_第3頁
數(shù)值分析課后習(xí)題及答案_第4頁
數(shù)值分析課后習(xí)題及答案_第5頁
資源描述:

《數(shù)值分析課后習(xí)題及答案》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。

1、第一章0171設(shè)』>()」的相對誤差為兒求lar的誤差.解ln.r—ln.r*=InIn-—―-—=ln($+l)~<5"*丹TQp?)X*02.設(shè)丿的相對誤至為2%?求〃的相對誤羞.€r(x*)?8SM=ner(x)=0.02刃Ol?利用公式(I.1)<在課本中圧公式(2.3))求下列各近似值的謀差限:(j)j-f+”+j7?-rf?.i'2?n?(iii)工〔?其中?時?.吋7;均為笫3題所給的數(shù).解(j)e9(J'f+.珀+.r;>^e(j'i)+r(jV)+f(』;)=}xi07+》X10$+4-X103

2、f?(?時??石??時>=貞?.i'3(.口—?r;)+?時?才;?(“2—>+.r;?.i'2(ill)(^2IH;)W

3、—(-r2~^2)—■/7<^4—?T;)?24(4〉=

4、卑町(孔)—咯町(才4〉

5、WI遼I[Ie;(才2)

6、+

7、e;(x4)

8、]012.計算/=(Q1屮?取吃~1?1?利用下列篩式計算?哪一個得到的結(jié)果戰(zhàn)好?—7^,(3-2施幾,99-70妊(>/2+1)$(3+2何3解(施一1)6=0.0050506…取72^1.4.(1)————1---?-=0052328(#+])?(】?4+W2.”(2)(3-2Q)3~(3-2Xl?l

9、)3^0.008(3)20.0051253(3+2施戶(3+2.8戶99一7072^99-70X1.4=1經(jīng)比較可知.以——「一計算得到的結(jié)果M好.(3+2Q第二章O1.當(dāng)r=l,1,2時,/(.r)=0,3?1?求./(.門的:次插值多解U(x)=/(fcr0)4(.r)+f(xx)/

10、(x)4-/(.r2)/2(x)=0+(-3)(*—1)(j*—2)

11、.(j-—)(.i+1)(一1一1)(一1-2)(2-1)(2+1)◎2.給出/(,r)=ln.r數(shù)值表X0.10.50.6ln.r-0.916291一0.693147-0.510826JC0.70

12、.8Inx—0.356675一0.223144用線性插值及二次插值計算lnO.5l的近似值.分析利用Newum插值多項式.解依據(jù)插值誤差估計式選距肉0.51較近的點(diǎn)為插值卩點(diǎn)?并建立差商表?口=0.5一0.693117、〉1.823210、?門=0.6—0.0826〈J>0.201115>2.027325/?口=0.I-0.91G291^^“出NewtonMi值多項式.Vj.r)=-0.693117+1.823210(.r-0.5)、(.r)=Ni(m)+(—0.201115)(.r—0.5)(0.6)計算近似值.rj(0.51)=0.693117+

13、1.823210X(0.540.5)a-0.620219N?(0.51)=Nj(O.51)-0.201115X(0.5I-C).5)X(0.54—0.6)a-0.616839Oi?設(shè)巧為互異節(jié)點(diǎn)?求證:n)另m:/j(.r)=xk(k=0.1-onii)工(?_-.r)%(x)=0(k=1.2,????")?證明i)函數(shù)〃及y;^//.r)均為被插値函數(shù)川的關(guān)于互異H點(diǎn){小;“的1超過〃次的捕值多項式?利川插值多項式的惟一性知兩者恒辱?ii)(?巧—?曠)%(才)==2加)2k”(一?『)…>-0>-0?—0inrkj—(、r-*'?

14、kn=ssi-o;-o(交換求和次序)(有關(guān)因子提出求和符號外)i=0(利用iWkJ及結(jié)論(1))=(.r—j'Y=0◎5?設(shè)/(?“€◎[>』]且/(=/(u)2—/(/>)^—^=0u—bb—a應(yīng)用插値余項公式右If(,r}—L(.r)I=—/^(^)(.

15、(.r—a〉(/—")I£』(“一"尸max

16、/"(”)O?所以

17、/(j)^—(ba)-max/"(*).笫三章◎11?假設(shè)/(")在"]上連續(xù)?求J(工)的冬次赧隹一致逼近多項式?分析山閉區(qū)間連續(xù)函數(shù)n質(zhì)知?{(6:中?七w4??”]?使得max/(.?)—/(.

18、/(?/)—Po

19、=max!

20、M~PoI

21、h-致遏近多項式.◎14.

22、求/")=*在[0.1]匕的帰住一次逼近多項式.分析

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。