缺失數(shù)據下半參數(shù)單調回歸模型的估計

缺失數(shù)據下半參數(shù)單調回歸模型的估計

ID:47366102

大?。?.35 MB

頁數(shù):29頁

時間:2019-07-30

缺失數(shù)據下半參數(shù)單調回歸模型的估計_第1頁
缺失數(shù)據下半參數(shù)單調回歸模型的估計_第2頁
缺失數(shù)據下半參數(shù)單調回歸模型的估計_第3頁
缺失數(shù)據下半參數(shù)單調回歸模型的估計_第4頁
缺失數(shù)據下半參數(shù)單調回歸模型的估計_第5頁
資源描述:

《缺失數(shù)據下半參數(shù)單調回歸模型的估計》由會員上傳分享,免費在線閱讀,更多相關內容在工程資料-天天文庫。

1、缺失數(shù)據下半參數(shù)單調回歸模型的估計滕廣青毛英爽2012-12-1314:33:22  來源:《數(shù)理統(tǒng)計與管理》(京)2011年6期第979~988頁  內容提要:研究了響應變量缺失情況下半參數(shù)單調回歸模型的估計問題。利用嵌入核估計的方法得到了參數(shù)部分的估計,在此基礎上構造了非參數(shù)部分的單調約束最小二乘估計。證明了參數(shù)估計的漸近分布為正態(tài)分布,得到了非參數(shù)部分估計的收斂速度。通過隨機模擬研究了有限樣本量下估計的表現(xiàn)?! £P鍵詞:缺失數(shù)據半參數(shù)單調回歸漸近性質估計  作者簡介:孫志猛,中央財經大學(北京

2、100081);張忠占,杜江,北京工業(yè)大學應用數(shù)理學院(北京100124)。    缺失數(shù)據下半參數(shù)單調回歸模型的估計滕廣青毛英爽2012-12-1314:33:22  來源:《數(shù)理統(tǒng)計與管理》(京)2011年6期第979~988頁  內容提要:研究了響應變量缺失情況下半參數(shù)單調回歸模型的估計問題。利用嵌入核估計的方法得到了參數(shù)部分的估計,在此基礎上構造了非參數(shù)部分的單調約束最小二乘估計。證明了參數(shù)估計的漸近分布為正態(tài)分布,得到了非參數(shù)部分估計的收斂速度。通過隨機模擬研究了有限樣本量下估計的表現(xiàn)?!?/p>

3、 關鍵詞:缺失數(shù)據半參數(shù)單調回歸漸近性質估計  作者簡介:孫志猛,中央財經大學(北京100081);張忠占,杜江,北京工業(yè)大學應用數(shù)理學院(北京100124)。    缺失數(shù)據下半參數(shù)單調回歸模型的估計滕廣青毛英爽2012-12-1314:33:22  來源:《數(shù)理統(tǒng)計與管理》(京)2011年6期第979~988頁  內容提要:研究了響應變量缺失情況下半參數(shù)單調回歸模型的估計問題。利用嵌入核估計的方法得到了參數(shù)部分的估計,在此基礎上構造了非參數(shù)部分的單調約束最小二乘估計。證明了參數(shù)估計的漸近分布為正

4、態(tài)分布,得到了非參數(shù)部分估計的收斂速度。通過隨機模擬研究了有限樣本量下估計的表現(xiàn)?! £P鍵詞:缺失數(shù)據半參數(shù)單調回歸漸近性質估計  作者簡介:孫志猛,中央財經大學(北京100081);張忠占,杜江,北京工業(yè)大學應用數(shù)理學院(北京100124)。    缺失數(shù)據下半參數(shù)單調回歸模型的估計滕廣青毛英爽2012-12-1314:33:22  來源:《數(shù)理統(tǒng)計與管理》(京)2011年6期第979~988頁  內容提要:研究了響應變量缺失情況下半參數(shù)單調回歸模型的估計問題。利用嵌入核估計的方法得到了參數(shù)部分的

5、估計,在此基礎上構造了非參數(shù)部分的單調約束最小二乘估計。證明了參數(shù)估計的漸近分布為正態(tài)分布,得到了非參數(shù)部分估計的收斂速度。通過隨機模擬研究了有限樣本量下估計的表現(xiàn)?! £P鍵詞:缺失數(shù)據半參數(shù)單調回歸漸近性質估計  作者簡介:孫志猛,中央財經大學(北京100081);張忠占,杜江,北京工業(yè)大學應用數(shù)理學院(北京100124)?!   ∪笔?shù)據下半參數(shù)單調回歸模型的估計滕廣青毛英爽2012-12-1314:33:22  來源:《數(shù)理統(tǒng)計與管理》(京)2011年6期第979~988頁  內容提要:研究了

6、響應變量缺失情況下半參數(shù)單調回歸模型的估計問題。利用嵌入核估計的方法得到了參數(shù)部分的估計,在此基礎上構造了非參數(shù)部分的單調約束最小二乘估計。證明了參數(shù)估計的漸近分布為正態(tài)分布,得到了非參數(shù)部分估計的收斂速度。通過隨機模擬研究了有限樣本量下估計的表現(xiàn)?! £P鍵詞:缺失數(shù)據半參數(shù)單調回歸漸近性質估計  作者簡介:孫志猛,中央財經大學(北京100081);張忠占,杜江,北京工業(yè)大學應用數(shù)理學院(北京100124)?!   ?引言  考慮如下的半參數(shù)回歸模型  Y=β+h(W)+ε,(1)  其中,Y為響應

7、變量,為p維解釋變量,W為1維解釋變量,ε為隨機誤差,滿足E(ε

8、X,W)=0,β為p維未知回歸參數(shù),h(·)為未知回歸函數(shù),T表示轉置?! “雲?shù)回歸模型是線性回歸模型和非參數(shù)回歸模型的結合。與線性回歸模型相比,半參數(shù)回歸模型對于描述響應變量和解釋變量之間的數(shù)量關系具有更強的適應性;與非參數(shù)回歸模型相比,半參數(shù)回歸模型更容易解釋,并且能夠在一定程度上解決高維回歸函數(shù)估計的“維數(shù)禍根”問題。Engle等[1]首先用半參數(shù)回歸模型研究了天氣因素對用電量的影響。之后,半參數(shù)回歸模型被廣泛地應用到不同的領

9、域,見Heckman[2],Spechman[3],Schmalensee和Stoker[4]等。傳統(tǒng)的半參數(shù)回歸模型通常把h(·)假定為某光滑函數(shù),用核估計、懲罰最小二乘估計、樣條估計或局部多項式估計等估計方法對h(·)進行估計。在實際應用中,經常遇到響應變量和某些解釋變量之間具有明顯單調性的情形。當根據實際應用背景可以判斷h(·)為未知單調函數(shù)時,模型(1)變?yōu)榘雲?shù)單調回歸模型。Huang[5]研究了半參數(shù)單調回歸模型的估計問題,并借助經驗過程有關理論討論了參數(shù)

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內容,確認文檔內容符合您的需求后進行下載,若出現(xiàn)內容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。