教案-平面向量的數(shù)乘運(yùn)算演示教學(xué).doc

教案-平面向量的數(shù)乘運(yùn)算演示教學(xué).doc

ID:57127276

大?。?64.50 KB

頁(yè)數(shù):6頁(yè)

時(shí)間:2020-08-03

教案-平面向量的數(shù)乘運(yùn)算演示教學(xué).doc_第1頁(yè)
教案-平面向量的數(shù)乘運(yùn)算演示教學(xué).doc_第2頁(yè)
教案-平面向量的數(shù)乘運(yùn)算演示教學(xué).doc_第3頁(yè)
教案-平面向量的數(shù)乘運(yùn)算演示教學(xué).doc_第4頁(yè)
教案-平面向量的數(shù)乘運(yùn)算演示教學(xué).doc_第5頁(yè)
資源描述:

《教案-平面向量的數(shù)乘運(yùn)算演示教學(xué).doc》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)

1、教案-平面向量的數(shù)乘運(yùn)算精品文檔【教學(xué)過程】*揭示課題7.2.3平面向量的數(shù)乘運(yùn)算*情境導(dǎo)入有一同學(xué)從O點(diǎn)出發(fā),向東行進(jìn),1秒后到達(dá)A點(diǎn),按照相同的走法,問3秒后人在哪里,用向量怎么表示?觀察圖7-15可以看出,向量與向量a共線,并且=3a.a(chǎn)aaaOABC圖7?15*引入新知一般地,實(shí)數(shù)與向量a的積是一個(gè)向量,記作a,它的模為(7.3)若0,則當(dāng)>0時(shí),a的方向與a的方向相同,當(dāng)<0時(shí),a的方向與a的方向相反.當(dāng)λ=0時(shí),a=0。實(shí)數(shù)與向量的乘法運(yùn)算叫做向量的數(shù)乘運(yùn)算。由上面定義可以得到,對(duì)于非零向量a、b,當(dāng)時(shí),有(7.4)容易驗(yàn)證,對(duì)于任意向量a,b及任意實(shí)數(shù)

2、,向量數(shù)乘運(yùn)算滿足如下的法則:收集于網(wǎng)絡(luò),如有侵權(quán)請(qǐng)聯(lián)系管理員刪除精品文檔【做一做】請(qǐng)畫出圖形來(lái),分別驗(yàn)證這些法則.向量加法及數(shù)乘運(yùn)算在形式上與實(shí)數(shù)的有關(guān)運(yùn)算規(guī)律相類似,因此,實(shí)數(shù)運(yùn)算中的去括號(hào)、移項(xiàng)、合并同類項(xiàng)等變形,可直接應(yīng)用于向量的運(yùn)算中.但是,要注意向量的運(yùn)算與數(shù)的運(yùn)算的意義是不同的.*例題講解例1在平行四邊形ABCD中,O為兩對(duì)角線交點(diǎn)如圖7-16,=a,=b,試用a,b表示向量、.圖7-16例2計(jì)算:(1)(-3)×4a(2)5(a+b)-2(a-b)(3)(a+4b-3c)-(2a-3b-5c)*練習(xí)強(qiáng)化1.計(jì)算:(1)3(a?2b)-2(2a+b);

3、(2)3a?2(3a?4b)+3(a?b).2.設(shè)a,b不共線,求作有向線段,使=(a+b).*揭示課題7.4.1平面向量的內(nèi)積*情境導(dǎo)入收集于網(wǎng)絡(luò),如有侵權(quán)請(qǐng)聯(lián)系管理員刪除精品文檔Fs圖7—21O如圖7-21所示,水平地面上有一輛車,某人用100N的力,朝著與水平線成角的方向拉小車,使小車前進(jìn)了100m.那么,這個(gè)人做了多少功?我們知道,這個(gè)人做功等于力與在力的方向上移動(dòng)的距離的乘積.如圖7-22所示,設(shè)水平方向的單位向量為i,垂直方向的單位向量為j,則i+yj,即力F是水平方向的力與垂直方向的力的和,垂直方向上沒有產(chǎn)生位移,沒有做功,水平方向上產(chǎn)生的位移為s,即

4、W=|F|c(diǎn)os·|s|=100×·10=500(J)*引入新知BAO圖7-23ab力F與位移s都是向量,而功W是一個(gè)數(shù)量,它等于由兩個(gè)向量F,s的模及它們的夾角的余弦的乘積,W叫做向量F與向量s的內(nèi)積,它是一個(gè)數(shù)量,又叫做數(shù)量積.如圖7-23,設(shè)有兩個(gè)非零向量a,b,作=a,=b,由射線OA與OB所形成的角叫做向量a與向量b的夾角,記作.我們規(guī)定,收集于網(wǎng)絡(luò),如有侵權(quán)請(qǐng)聯(lián)系管理員刪除精品文檔兩個(gè)向量a,b的模與它們的夾角的余弦之積叫做向量a與向量b的內(nèi)積,記作a·b,即a·b=|a

5、

6、b

7、cos       (7.10)上面的問題中,人所做的功

8、可以記作W=F·s.由內(nèi)積的定義可知a·0=0,0·a=0.由內(nèi)積的定義可以得到下面幾個(gè)重要結(jié)果:(1)當(dāng)=0時(shí),a·b=

9、a

10、

11、b

12、;當(dāng)=時(shí),a·b=?

13、a

14、

15、b

16、.(2)cos=.(3)當(dāng)b=a時(shí),有=0,所以a·a=

17、a

18、

19、a

20、=

21、a

22、2,即

23、a

24、=.(4)當(dāng)時(shí),ab,因此,a·b=因此對(duì)非零向量a,b,有a·b=0ab.可以驗(yàn)證,向量的內(nèi)積滿足下面的運(yùn)算律:(1)a·b=b·a.(2)()·b=(a·b)=a·(b).(3)(a+b)·c=a·c+b·c.注意:一般地,向量的內(nèi)積不滿足結(jié)合律,即a·(b·c)≠(a·b

25、)·c.*例題講解例1已知

26、a

27、=3,

28、b

29、=2,=,求a·b.例2已知

30、a

31、=

32、b

33、=,a·b=,求.*練習(xí)強(qiáng)化1.已知

34、a

35、=7,

36、b

37、=4,a和b的夾角為,求a·b.2.已知a·a=9,求

38、a

39、.3.已知

40、a

41、=2,

42、b

43、=3,=,求(2a+b)·b.收集于網(wǎng)絡(luò),如有侵權(quán)請(qǐng)聯(lián)系管理員刪除精品文檔*歸納小結(jié)向量的數(shù)乘運(yùn)算得到的是什么向量?向量的內(nèi)積運(yùn)算得到的是什么?結(jié)論:向量的數(shù)乘運(yùn)算得到的是平行向量,向量的模為向量的內(nèi)積運(yùn)算得到的是數(shù)量,a·b=|a

44、

45、b

46、cos收集于網(wǎng)絡(luò),如有侵權(quán)請(qǐng)聯(lián)系管理員刪除

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。