概率論與數(shù)理統(tǒng)計(jì)公式整理

概率論與數(shù)理統(tǒng)計(jì)公式整理

ID:2075638

大?。?80.00 KB

頁(yè)數(shù):26頁(yè)

時(shí)間:2017-11-14

概率論與數(shù)理統(tǒng)計(jì)公式整理_第1頁(yè)
概率論與數(shù)理統(tǒng)計(jì)公式整理_第2頁(yè)
概率論與數(shù)理統(tǒng)計(jì)公式整理_第3頁(yè)
概率論與數(shù)理統(tǒng)計(jì)公式整理_第4頁(yè)
概率論與數(shù)理統(tǒng)計(jì)公式整理_第5頁(yè)
資源描述:

《概率論與數(shù)理統(tǒng)計(jì)公式整理》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在應(yīng)用文檔-天天文庫(kù)

1、概率論與數(shù)理統(tǒng)計(jì)公式(全)2011-1-1第二章隨機(jī)變量及其分布(1)離散型隨機(jī)變量的分布律設(shè)離散型隨機(jī)變量的可能取值為Xk(k=1,2,…)且取各個(gè)值的概率,即事件(X=Xk)的概率為P(X=xk)=pk,k=1,2,…,則稱上式為離散型隨機(jī)變量的概率分布或分布律。有時(shí)也用分布列的形式給出:。顯然分布律應(yīng)滿足下列條件:(1),,(2)。(2)連續(xù)型隨機(jī)變量的分布密度設(shè)是隨機(jī)變量的分布函數(shù),若存在非負(fù)函數(shù),對(duì)任意實(shí)數(shù),有,則稱為連續(xù)型隨機(jī)變量。稱為的概率密度函數(shù)或密度函數(shù),簡(jiǎn)稱概率密度。密度函數(shù)具有下面4個(gè)性質(zhì):1°。2°。(3)離散與連續(xù)型隨機(jī)變量的關(guān)系積分元在連續(xù)型隨

2、機(jī)變量理論中所起的作用與在離散型隨機(jī)變量理論中所起的作用相類似。1概率論與數(shù)理統(tǒng)計(jì)公式(全)2011-1-1(4)分布函數(shù)設(shè)為隨機(jī)變量,是任意實(shí)數(shù),則函數(shù)稱為隨機(jī)變量X的分布函數(shù),本質(zhì)上是一個(gè)累積函數(shù)??梢缘玫絏落入?yún)^(qū)間的概率。分布函數(shù)表示隨機(jī)變量落入?yún)^(qū)間(–∞,x]內(nèi)的概率。分布函數(shù)具有如下性質(zhì):1°;2°是單調(diào)不減的函數(shù),即時(shí),有;3°,;4°,即是右連續(xù)的;5°。對(duì)于離散型隨機(jī)變量,;對(duì)于連續(xù)型隨機(jī)變量,。(5)八大分布0-1分布P(X=1)=p,P(X=0)=q二項(xiàng)分布在重貝努里試驗(yàn)中,設(shè)事件發(fā)生的概率為。事件發(fā)生的次數(shù)是隨機(jī)變量,設(shè)為,則可能取值為。,其中,則稱

3、隨機(jī)變量服從參數(shù)為,的二項(xiàng)分布。記為。當(dāng)時(shí),,,這就是(0-1)分布,所以(0-1)分布是二項(xiàng)分布的特例。1概率論與數(shù)理統(tǒng)計(jì)公式(全)2011-1-1泊松分布設(shè)隨機(jī)變量的分布律為,,,則稱隨機(jī)變量服從參數(shù)為的泊松分布,記為或者P()。泊松分布為二項(xiàng)分布的極限分布(np=λ,n→∞)。超幾何分布隨機(jī)變量X服從參數(shù)為n,N,M的超幾何分布,記為H(n,N,M)。幾何分布,其中p≥0,q=1-p。隨機(jī)變量X服從參數(shù)為p的幾何分布,記為G(p)。均勻分布設(shè)隨機(jī)變量的值只落在[a,b]內(nèi),其密度函數(shù)在[a,b]上為常數(shù),即?a≤x≤b其他,則稱隨機(jī)變量在[a,b]上服從均勻分布,記

4、為X~U(a,b)。分布函數(shù)為?a≤x≤b0,xb。?當(dāng)a≤x1

5、函數(shù)為。是不可求積函數(shù),其函數(shù)值,已編制成表可供查用。Φ(-x)=1-Φ(x)且Φ(0)=。如果~,則~。。(6)分位數(shù)下分位表:;上分位表:。(7)函數(shù)分布離散型已知的分布列為?,的分布列(互不相等)如下:,若有某些相等,則應(yīng)將對(duì)應(yīng)的相加作為的概率。連續(xù)型先利用X的概率密度f(wàn)X(x)寫出Y的分布函數(shù)FY(y)=P(g(X)≤y),再利用變上下限積分的求導(dǎo)公式求出fY(y)。1概率論與數(shù)理統(tǒng)計(jì)公式(全)2011-1-1第三章二維隨機(jī)變量及其分布(1)聯(lián)合分布離散型如果二維隨機(jī)向量(X,Y)的所有可能取值為至多可列個(gè)有序?qū)Γ▁,y),則稱為離散型隨機(jī)量。設(shè)=(X,Y)的所有

6、可能取值為,且事件{=}的概率為pij,,稱為=(X,Y)的分布律或稱為X和Y的聯(lián)合分布律。聯(lián)合分布有時(shí)也用下面的概率分布表來(lái)表示:YXy1y2…yj…x1p11p12…p1j…x2p21p22…p2j…xipi1……這里pij具有下面兩個(gè)性質(zhì):(1)pij≥0(i,j=1,2,…);(2)連續(xù)型對(duì)于二維隨機(jī)向量,如果存在非負(fù)函數(shù),使對(duì)任意一個(gè)其鄰邊分別平行于坐標(biāo)軸的矩形區(qū)域D,即D={(X,Y)

7、a

8、;(2)1概率論與數(shù)理統(tǒng)計(jì)公式(全)2011-1-1(2)二維隨機(jī)變量的本質(zhì)(3)聯(lián)合分布函數(shù)設(shè)(X,Y)為二維隨機(jī)變量,對(duì)于任意實(shí)數(shù)x,y,二元函數(shù)稱為二維隨機(jī)向量(X,Y)的分布函數(shù),或稱為隨機(jī)變量X和Y的聯(lián)合分布函數(shù)。分布函數(shù)是一個(gè)以全平面為其定義域,以事件的概率為函數(shù)值的一個(gè)實(shí)值函數(shù)。分布函數(shù)F(x,y)具有以下的基本性質(zhì):(1)(2)F(x,y)分別對(duì)x和y是非減的,即當(dāng)x2>x1時(shí),有F(x2,y)≥F(x1,y);當(dāng)y2>y1時(shí),有F(x,y2)≥F(x,y1);(3)F(x,y)分別對(duì)x和y是右連續(xù)的,即(4)

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。