資源描述:
《《探索勾股定理》教學(xué)設(shè)計(jì)》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)。
1、word資料下載可編輯《探索勾股定理》教學(xué)設(shè)計(jì)課標(biāo)解讀:2011年《新課程標(biāo)準(zhǔn)》中指出“學(xué)生學(xué)習(xí)應(yīng)當(dāng)是一個(gè)生動(dòng)活潑的、主動(dòng)的和富有個(gè)性的過(guò)程.除接受學(xué)習(xí)外,動(dòng)手實(shí)踐、自主探究與合作交流同樣是學(xué)習(xí)數(shù)學(xué)的重要方式.學(xué)生應(yīng)當(dāng)有足夠的時(shí)間和空間經(jīng)歷觀察、實(shí)驗(yàn)、猜想、計(jì)算、推理、驗(yàn)證等活動(dòng)過(guò)程.”引導(dǎo)學(xué)生獨(dú)立思考、主動(dòng)探索、合作交流,使學(xué)生理解和掌握基本的數(shù)學(xué)知識(shí)與技能、數(shù)學(xué)思想和方法,獲得基本的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn).”教材分析:《勾股定理》是在學(xué)生已經(jīng)學(xué)習(xí)了直角三角形兩銳角的性質(zhì)之后提出來(lái)的另一條性質(zhì).它揭示了一個(gè)直角三角形三邊
2、之間的數(shù)量關(guān)系,勾通了形與數(shù)的聯(lián)系,是后面學(xué)習(xí)解直角三角形的重要依據(jù);勾股定理在生產(chǎn)與生活中應(yīng)用廣泛;再者,中國(guó)古代學(xué)者對(duì)勾股定理的研究有很多重要成就,對(duì)勾股定理的證明采用了很多方法,對(duì)后世影響很大,是對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育的好素材,因此勾股定理是幾何學(xué)中非常重要的定理.
學(xué)情分析:初二學(xué)生已具備一定的分析和歸納能力,對(duì)于勾股定理的得出,需要學(xué)生通過(guò)動(dòng)手操作,在觀察的基礎(chǔ)上,大膽地猜想數(shù)學(xué)結(jié)論.但對(duì)用割補(bǔ)法和面積法計(jì)算、驗(yàn)證幾何命題還有一定困難,因此在教學(xué)中需加強(qiáng)學(xué)生動(dòng)口、動(dòng)手、合作交流等能力,加強(qiáng)學(xué)生對(duì)猜想、歸
3、納、推理、轉(zhuǎn)化等數(shù)學(xué)思想的理解.教學(xué)目標(biāo):1.在經(jīng)歷勾股定理探索的過(guò)程中,逐步發(fā)展自身的合情推理能力,進(jìn)一步用心體會(huì)數(shù)形結(jié)合思想.充分發(fā)揮自主探索精神,在小組合作中積極參與討論,與他人分工、團(tuán)結(jié)、合作.2.掌握勾股定理,了解利用拼圖勾股驗(yàn)證勾股定理的方法,會(huì)初步運(yùn)用勾股定理解決一些簡(jiǎn)單的數(shù)學(xué)問(wèn)題和實(shí)際問(wèn)題.通過(guò)問(wèn)題的解決,逐步體會(huì)勾股定理的應(yīng)用價(jià)值,增強(qiáng)自信心,產(chǎn)生學(xué)習(xí)數(shù)學(xué)的更大興趣.3.在閱讀參考資料的過(guò)程中,了解了古今中外在勾股定理研究方面取得的偉大成就,慢慢體會(huì)勾股定理的文化價(jià)值,感受數(shù)學(xué)文化.教學(xué)重點(diǎn):勾
4、股定理的探索及簡(jiǎn)單應(yīng)用..教學(xué)難點(diǎn):勾股定理的證明教學(xué)方法:專業(yè)技術(shù)資料word資料下載可編輯本節(jié)課采用探究發(fā)現(xiàn)式教學(xué),由淺入深,由特殊到一般地提出問(wèn)題,鼓勵(lì)學(xué)生采用觀察分析、自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的形成與應(yīng)用過(guò)程.學(xué)法指導(dǎo):采用自主探索、小組合作交流的學(xué)習(xí)方式.評(píng)價(jià)設(shè)計(jì):1-2號(hào)學(xué)生回答問(wèn)題獎(jiǎng)勵(lì)組內(nèi)1顆星,3-4號(hào)學(xué)號(hào)學(xué)生回答問(wèn)題獎(jiǎng)勵(lì)組內(nèi)2顆星,5-6號(hào)學(xué)生回答問(wèn)題獎(jiǎng)勵(lì)組內(nèi)3顆星.能夠提出有價(jià)值的問(wèn)題的小組,加2顆星,一般問(wèn)題加1顆星.前三名為明星小組,每組前三名為明星組員.教學(xué)程序:
5、環(huán)節(jié)一:創(chuàng)設(shè)情境,導(dǎo)入新課ABC如圖:這是某學(xué)校平面圖的一部分,A處是教學(xué)樓,B處是學(xué)生食堂,從教學(xué)樓到食堂有一條路ACB,但一些不守紀(jì)律的同學(xué)經(jīng)常從在教學(xué)樓與食堂之間一塊長(zhǎng)80米、寬60米的長(zhǎng)方形草坪上抄近路,結(jié)果草坪被踏出了一條斜路,你怎么看待這些同學(xué)的行為?你認(rèn)為走斜路比直路能少走多少米?這是我們生活中經(jīng)常遇到的實(shí)際問(wèn)題,那么將其轉(zhuǎn)化為數(shù)學(xué)問(wèn)題它又是已知什么求什么的問(wèn)題呢?已知直角三角形的兩邊,如何求第三邊,這就是我們今天要共同探索的問(wèn)題----直角三角形三邊的數(shù)量關(guān)系.【設(shè)計(jì)意圖:從學(xué)生熟悉的生活情景入手
6、,構(gòu)造現(xiàn)有知識(shí)不足以解決的問(wèn)題,形成知識(shí)沖突,讓學(xué)生感受到探索本節(jié)知識(shí)的必要性,從而激發(fā)學(xué)生的學(xué)習(xí)熱情.同時(shí)借助這個(gè)情境對(duì)學(xué)生進(jìn)行社會(huì)公德教育,使學(xué)生能夠明辨是非,更加規(guī)范自己的行為,養(yǎng)成良好品德.《標(biāo)準(zhǔn)》指出:“要讓學(xué)生在生動(dòng)具體的情境中學(xué)習(xí)數(shù)學(xué)”“要讓學(xué)生在現(xiàn)實(shí)的情境中體驗(yàn)和理解數(shù)學(xué)”“要選擇具有現(xiàn)實(shí)性和趣味性的素材作為學(xué)習(xí)的背景等.好奇心、求知欲是學(xué)生學(xué)習(xí)數(shù)學(xué)的原動(dòng)力.專業(yè)技術(shù)資料word資料下載可編輯在教學(xué)中選擇聯(lián)系學(xué)生生活的、學(xué)生關(guān)注的、感興趣的素材作為認(rèn)識(shí)的背景,激發(fā)學(xué)生的求知欲,培養(yǎng)學(xué)生的學(xué)習(xí)興趣.
7、】環(huán)節(jié)二:合作探究,發(fā)現(xiàn)新知活動(dòng)一地磚里的秘密在2500年前,古希臘著名的數(shù)學(xué)家畢達(dá)哥拉斯就已經(jīng)對(duì)直角三角形三邊的數(shù)量關(guān)系有了明確的結(jié)論并給予了證明,相傳他對(duì)三角形三邊關(guān)系的發(fā)現(xiàn)竟然是從地磚中得到的,現(xiàn)在就讓我們一同回到2500年前,體驗(yàn)一下畢達(dá)哥拉斯的經(jīng)歷:【設(shè)計(jì)意圖:通過(guò)講述故事來(lái)進(jìn)一步激發(fā)學(xué)生學(xué)習(xí)興趣,使學(xué)生在不知不覺(jué)中進(jìn)入學(xué)習(xí)的最佳狀態(tài).通過(guò)故事也使學(xué)生明白:科學(xué)家的偉大成就多數(shù)都是在看似平淡無(wú)奇的現(xiàn)象中發(fā)現(xiàn)和研究出來(lái)的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來(lái).】問(wèn)題1、地磚是
8、由全等的直角三角形拼接而成的,每個(gè)直角三角形都相鄰三個(gè)正方形,這三個(gè)正方形面積間有怎樣的關(guān)系呢?你是怎么看出來(lái)的?問(wèn)題2、如果用直角三角形三邊長(zhǎng)來(lái)分別表示這三個(gè)正方形的面積,又將反映三邊怎樣的數(shù)量關(guān)系?A﹢B=C等腰直角三角形兩直角邊的平方和等于斜邊的平方.【設(shè)計(jì)意圖:對(duì)地磚中圖形的探索,培養(yǎng)學(xué)生能夠用數(shù)學(xué)的眼光認(rèn)識(shí)生活中現(xiàn)象的能力,將面積關(guān)系轉(zhuǎn)化為等腰直角三角形三邊之間