基于粒子群優(yōu)化權(quán)重向量的交互式圖像檢索

基于粒子群優(yōu)化權(quán)重向量的交互式圖像檢索

ID:31980175

大?。?.83 MB

頁(yè)數(shù):54頁(yè)

時(shí)間:2019-01-30

基于粒子群優(yōu)化權(quán)重向量的交互式圖像檢索_第1頁(yè)
基于粒子群優(yōu)化權(quán)重向量的交互式圖像檢索_第2頁(yè)
基于粒子群優(yōu)化權(quán)重向量的交互式圖像檢索_第3頁(yè)
基于粒子群優(yōu)化權(quán)重向量的交互式圖像檢索_第4頁(yè)
基于粒子群優(yōu)化權(quán)重向量的交互式圖像檢索_第5頁(yè)
資源描述:

《基于粒子群優(yōu)化權(quán)重向量的交互式圖像檢索》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)

1、Oneisbased00thecolorhistogramoftheweightvectorassociatedfeedback:PositivecorrelationfeedbackframeworkbasedonthePSOoptimizationColorhistogramoftheweightvector、thepositiveandnegativerelevancefeedbackframeworkbased0nthePSOoptimizationcolorhistogramoftheweightvector;basedontr

2、ansformedweighteigenvector,Wefirstdeterminetheuser’Sinitialinquirytopointthemovementformula,accordingtouserfeedbackontheresultsofthepreviousoutputtoadjusttheweightsqueryvecqor,lettheweightinquiryvectorawayfromthecounter-examplesandclosepositiveexamples,Oilthebasisgetthefu

3、rtheroptimizationoftheweightinquiryvector,whichwillbemoreclosetotherealintentionsoftheUSCLThesecondisassociatedfeedbackbasedontheintegrationoffeatureweightvector:ThepositivecorrelationfeedbackframeworkbasedonPSOoptimizingtheintegrationoffeaturesweightvector、thepositiveand

4、negativerelevancefeedbackframeworkbythePSOoptimizationtheintegrationoffeaturesweightvector.ContrastingasinglefeatureonlyCallexpresssomepropertiesofanimage,bycombiningthefeaturevectoroftextures,shapesandcolors,wecangetacomprehensiveweightvectorofthetextures,shapesandcolors

5、,andusingparticleswarmoptimization(eso)algorithmwecanoptimizeweightqueryvectorandupdateit.Finally,contrastingthenaturalimagewithCorell000byexperiment,andcomparingrelatedalgorithmswithourprevioussearchalgorithmperformance,itCallv而匆theeffectivenessofouralgorithm,andtheweigh

6、tflamefornaturalsearchhasidealresults,andpossessescertainadvantages.KEYWORDS:imageretrieval,theweightvector,relevancefeedback,colorhistogram,PSOIV目錄摘要???????????????????????????????????IAbstract??......???..........?...............................,......?...........?.....

7、.....?..............................Ill第一章緒論????????????????????????????????11.1研究背景和意義???????????????????????????11.2圖像檢索技術(shù)國(guó)內(nèi)外發(fā)展現(xiàn)狀?????????????????????21.3相關(guān)反饋??????????????????????????????31。4群智能優(yōu)化算法???????????????????????????51.5本文的主要工作和內(nèi)容組織??????????????????????6第二章圖像

8、特征提取????????????????????????????72.1圖像的顏色特征???????????????????????????72.2圖像的紋理特征???????????????

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶(hù)上傳,版權(quán)歸屬用戶(hù),天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶(hù)請(qǐng)聯(lián)系客服處理。