資源描述:
《基于數(shù)據(jù)挖掘的電信行業(yè)中客戶流失模型的分析與實現(xiàn)》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、浙江理工大學(xué)碩士學(xué)位論文基于數(shù)據(jù)挖掘的電信行業(yè)中客戶流失模型的研究與實現(xiàn)AbstractInrecentyears,customerchumintelecombecomesserious.ForthethreeoperatorsincludingMobile,ChinaUnicornandTelcomwhoCallassuretheircustomersnottoabandonthedefaultgotoanotherone,atthesametimecangetthelostfromothers,wil
2、lbethefinalwinnerAbittercontesthaslaunchedamongoperatorswhodoalltheycouldtogainmorecustomers.However,operatorspaymuchmoreattentiontocustomerschurnedratherthanthosewhoarereducingtheirconsumption.Hardlyrealizethatthosepeoplearerunningoffgraduallyaspotential
3、lOSScustomers.Telecommunicationsindus仃),hasamassofdataanddiversitywhichmeansthateverycustomerhasalargenumberofattributeswhichcalledvariablesinthedataminingmodel,suchasARPU,chargeway,downtimesetc.Inordertobettermodel,thispaperdesignswidesheetfromthreeaspec
4、tsofoperatorsendsmessagestoremindcustomer,customerperceptivevalueandvaluebehaviorofcustomerbasedontheassumptionthatthereasonsforcustomerschum.Thendividesthesevariablesintodifferentgroupstodecidewhichvariablestoparticipateinmodelmodeling.Combinedthecustome
5、r’Sowncharacteristicsandthegroupingvariablesthensubdivideallofthecustomers.Customer-chummodelbecomesmoreandmoreintelecommunicationsindustry,inordertoimprovethehitrateofthemodel,thispaperproposesacombinedmodelphilosophy.Thecombinedmodelisbasedontheconstrai
6、ntmodel,predictionmodel,markmodel.Constraintmodelselectsvariableshaslargedistinctiontobeconstraintconditions,predictionmodelscreensvisiblelossandrelativelyobviousvariables,markmodelselectsimplicitcustomerchumvariablestomakeupsmallamountofsamplestoidentify
7、customermorecomprehensively.Eachmodelhasitsownspecialvariables,asaresult,thecombinationmodelproposedinthispaperplaysasignificantroleincustomer-chummodel.ThismodelusesIBMSPSSStatistics,putsforwardtheconceptofpheromonedifferenceinantcolonyalgorithm,usingthe
8、improvedantcolonyalgorithmtosubdividethecustomertoimprovethecustomerclusteringeffect.Canonicaltransformationeliminatetheimpactofthedimensionlesscoefficientstomakethemodelmoreregular.Usinglogisticregressionalgorithmi