蘇科版九下《二次函數(shù)的應(yīng)用》ppt課件之一

蘇科版九下《二次函數(shù)的應(yīng)用》ppt課件之一

ID:37468494

大?。?88.50 KB

頁數(shù):17頁

時間:2019-05-12

蘇科版九下《二次函數(shù)的應(yīng)用》ppt課件之一_第1頁
蘇科版九下《二次函數(shù)的應(yīng)用》ppt課件之一_第2頁
蘇科版九下《二次函數(shù)的應(yīng)用》ppt課件之一_第3頁
蘇科版九下《二次函數(shù)的應(yīng)用》ppt課件之一_第4頁
蘇科版九下《二次函數(shù)的應(yīng)用》ppt課件之一_第5頁
資源描述:

《蘇科版九下《二次函數(shù)的應(yīng)用》ppt課件之一》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。

1、-202462-4xy⑴若-3≤x≤3,該函數(shù)的最大值、最小值分別為()、()。⑵又若0≤x≤3,該函數(shù)的最大值、最小值分別為()、()。求函數(shù)的最值問題,應(yīng)注意什么?55555132、圖中所示的二次函數(shù)圖像的解析式為:1、求下列二次函數(shù)的最大值或最小值:⑴y=-x2+2x-3;⑵y=x2+4x某商品現(xiàn)在的售價為每件60元,每星期可賣出300件,市場調(diào)查反映:每漲價1元,每星期少賣出10件;每降價1元,每星期可多賣出18件,已知商品的進(jìn)價為每件40元,如何定價才能使利潤最大?來到商場請大家?guī)е韵聨讉€問題讀題(1)題目中有幾種調(diào)整價格的方法?(2)題目涉及到哪些變量

2、?哪一個量是自變量?哪些量隨之發(fā)生了變化?某商品現(xiàn)在的售價為每件60元,每星期可賣出300件,市場調(diào)查反映:每漲價1元,每星期少賣出10件;每降價1元,每星期可多賣出18件,已知商品的進(jìn)價為每件40元,如何定價才能使利潤最大?來到商場分析:調(diào)整價格包括漲價和降價兩種情況先來看漲價的情況:⑴設(shè)每件漲價x元,則每星期售出商品的利潤y也隨之變化,我們先來確定y與x的函數(shù)關(guān)系式。漲價x元時則每星期少賣件,實際賣出件,銷額為元,買進(jìn)商品需付元因此,所得利潤為元10x(300-10x)(60+x)(300-10x)40(300-10x)y=(60+x)(300-10x)-40(

3、300-10x)即(0≤X≤30)(0≤X≤30)可以看出,這個函數(shù)的圖像是一條拋物線的一部分,這條拋物線的頂點是函數(shù)圖像的最高點,也就是說當(dāng)x取頂點坐標(biāo)的橫坐標(biāo)時,這個函數(shù)有最大值。由公式可以求出頂點的橫坐標(biāo).所以,當(dāng)定價為65元時,利潤最大,最大利潤為6250元在降價的情況下,最大利潤是多少?請你參考(1)的過程得出答案。解:設(shè)降價x元時利潤最大,則每星期可多賣18x件,實際賣出(300+18x)件,銷售額為(60-x)(300+18x)元,買進(jìn)商品需付40(300-10x)元,因此,得利潤答:定價為元時,利潤最大,最大利潤為6050元做一做由(1)(2)的討論

4、及現(xiàn)在的銷售情況,你知道應(yīng)該如何定價能使利潤最大了嗎?(0≤x≤20)歸納小結(jié):運用二次函數(shù)的性質(zhì)求實際問題的最大值和最小值的一般步驟:求出函數(shù)解析式和自變量的取值范圍配方變形,或利用公式求它的最大值或最小值。檢查求得的最大值或最小值對應(yīng)的自變量的值必須在自變量的取值范圍內(nèi)。解這類題目的一般步驟某商場銷售某種品牌的純牛奶,已知進(jìn)價為每箱40元,市場調(diào)查發(fā)現(xiàn):若每箱以50元銷售,平均每天可銷售100箱.價格每箱降低1元,平均每天多銷售25箱;價格每箱升高1元,平均每天少銷售4箱。如何定價才能使得利潤最大?練一練若生產(chǎn)廠家要求每箱售價在45—55元之間。如何定價才能使得

5、利潤最大?(為了便于計算,要求每箱的價格為整數(shù))有一經(jīng)銷商,按市場價收購了一種活蟹1000千克,放養(yǎng)在塘內(nèi),此時市場價為每千克30元。據(jù)測算,此后每千克活蟹的市場價,每天可上升1元,但是,放養(yǎng)一天需各種費用支出400元,且平均每天還有10千克蟹死去,假定死蟹均于當(dāng)天全部售出,售價都是每千克20元(放養(yǎng)期間蟹的重量不變).⑴設(shè)x天后每千克活蟹市場價為P元,寫出P關(guān)于x的函數(shù)關(guān)系式.⑵如果放養(yǎng)x天將活蟹一次性出售,并記1000千克蟹的銷售總額為Q元,寫出Q關(guān)于x的函數(shù)關(guān)系式。⑶該經(jīng)銷商將這批蟹放養(yǎng)多少天后出售,可獲最大利潤,(利潤=銷售總額-收購成本-費用)?最大利潤是

6、多少?思考解:①由題意知:P=30+x.②由題意知:死蟹的銷售額為200x元,活蟹的銷售額為(30+x)(1000-10x)元。駛向勝利的彼岸∴Q=(30+x)(1000-10x)+200x=--10x2+900x+30000③設(shè)總利潤為W=Q-30000-400x=-10x2+500x=-10(x-25)2+6250∴當(dāng)x=25時,總利潤最大,最大利潤為6250元。x(元)152030…y(件)252010…若日銷售量y是銷售價x的一次函數(shù)。 (1)求出日銷售量y(件)與銷售價x(元)的函數(shù)關(guān)系式;(6分) (2)要使每日的銷售利潤最大,每件產(chǎn)品的銷售價應(yīng)定為多少

7、元?此時每日銷售利潤是多少元?(6分)某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售價x(元)與產(chǎn)品的日銷售量y(件)之間的關(guān)系如下表:中考題選練(2)設(shè)每件產(chǎn)品的銷售價應(yīng)定為x元,所獲銷售利潤為w元。則產(chǎn)品的銷售價應(yīng)定為25元,此時每日獲得最大銷售利潤為225元。則解得:k=-1,b=40。1分5分6分7分10分12分(1)設(shè)此一次函數(shù)解析式為。所以一次函數(shù)解析為。設(shè)旅行團(tuán)人數(shù)為x人,營業(yè)額為y元,則旅行社何時營業(yè)額最大1.某旅行社組團(tuán)去外地旅游,30人起組團(tuán),每人單價800元.旅行社對超過30人的團(tuán)給予優(yōu)惠,即旅行團(tuán)每增加一人,每人的單價就降低10元.你能幫助

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。