資源描述:
《絕對(duì)收斂與條件收斂》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)。
1、第十一章第三節(jié)任意項(xiàng)級(jí)數(shù)的審斂法一、交錯(cuò)級(jí)數(shù)及其審斂法二、絕對(duì)收斂與條件收斂一、交錯(cuò)級(jí)數(shù)及其審斂法1.定義交錯(cuò)級(jí)數(shù):n?1u1?u2+u3?L+(?1)un+L(un>0)定理11.6(萊布尼茨審斂法)若交錯(cuò)級(jí)數(shù)滿足:1)un≥un+1(n=1,2,L);2)limun=0,稱滿足條件n→∞∞1),2)的級(jí)數(shù)n?1S≤u則∑(?1)un收斂,且其和1,為萊布尼茨n=1交錯(cuò)級(jí)數(shù)其余項(xiàng)滿足rn≤un+1.證明思路:limS2n=S,limS2n?1=S?limSn=Sn→∞n→∞n→∞證1o先證部分和數(shù)列S單調(diào)增加且有上界.2nQS2n=(u
2、1?u2)+(u3?u4)+L+(u2n?1?u2n)=S2n?2+(u2n?1?u2n)≥S2n?20≤un遞減+S2n=u1?(u2?u3)?(u4?u5)?L?(u2n?2?u2n?1)?u2n≤u1∴{S2n}單調(diào)增加且有上界∴l(xiāng)imS=S≤u2n1n→∞2o再證limS2n?1=Sn→∞又limS2n+1=lim(S2n+u2n+1)=limS2n=Sn→∞n→∞n→∞∴l(xiāng)imS=S,nn→∞故級(jí)數(shù)收斂于S,且S≤u1,Sn的余項(xiàng):rn=S?Sn=±(un+1?un+2+L)rn=un+1?un+2+L仍為萊布尼茨≤u.交錯(cuò)級(jí)數(shù)
3、n+1注1o萊布尼茨定理中的條件(1)可換成:u≤u(n≥N)n+1no2{u}不單調(diào)n∞n?1?/∑(?1)un(un>0)發(fā)散;n=1∞n2+(?1)nn?12+(?1)反例:對(duì)于∑(?1)n,un=n>022n=1雖然{u}不單調(diào),事實(shí)上,n123nu==u=,2+(?1)2k?122k?122k<2k22kun=n231u=>u=2k22k2k+122k+1∞2+(?1)n∞但(?1)n?11n?11]∑n=∑[(?)?n收斂n=12n=122o3{u}單調(diào)增加n∞?(?1)n?1u(u>0)發(fā)散;(Qlimu≠0)∑nnnn→∞
4、n=1例1證明交錯(cuò)級(jí)數(shù):∞n?1111n?11∑(?1)=1?++L+(?1)+Lp2p3pnpn=1n(p>0)收斂,并估計(jì)其余項(xiàng)r.n1解因un=p→0(n→∞),需證un遞減趨于零n11且un=p≥p=un+1n()n+1由萊布尼茨審斂法知級(jí)數(shù)收斂,1且rn≤un+1=p()n+1注1o取p=1,得收斂級(jí)數(shù)∞()?1n?111n?11∑=1?+?L+()?1+Ln=1n23n∞(?1)n?1和為ln2,即∑=ln2(第五節(jié))n=1n絕對(duì)值級(jí)數(shù)∞n?11∞12o∑(?1)收斂,但∑發(fā)散.n=1nn=1n∞∞問題:∑un與∑un斂散性的
5、關(guān)系?n=1n=1二、絕對(duì)收斂與條件收斂1.定義∞∞(1)∑un絕對(duì)收斂:若∑un收n=1n=1斂;∞∞∞(2)∑un條件收斂:若∑un收斂,但∑un發(fā)散.n=1n=1n=1∞例n?11∑(?1)收斂,如:∞條件收斂,0
1.n=1npn=12.定理(絕對(duì)收斂與收斂的關(guān)系)∞定理11.7若級(jí)數(shù)∑un絕對(duì)收斂,則該級(jí)數(shù)必收斂.∞n=11證設(shè)∑un收斂,令vn=(un?un)n=12∞則0≤vn≤un,由比較審斂法知∑vn收斂,n=1而u=u?2v,由收斂
6、級(jí)數(shù)的基本性質(zhì),nnn∞∞∞∑un=∑u?∑2vn收斂.∞∞n=1n∑u,∑2vn=1n=1nnn=1n=1∞∞注∑u收斂??∑u絕對(duì)收斂均收斂nnn=1n=1∞sinn!例2級(jí)數(shù)∑條件收斂、絕對(duì)收斂還是發(fā)散?2n=1nsinn!1∞1解Qun=2≤2,而∑2收斂,nnn=1n∞sinn!∴∑收斂2n=1n∞sinn!即∑絕對(duì)收斂.2n=1n∞n(?1)n例3判定交錯(cuò)級(jí)數(shù)∑的斂散性.n+10n=1nn解u=,v=(?1)unnnn+10o1絕對(duì)收斂性n1Qv=u=≥(n≥1)nnn+10n+10∞1∞而∑發(fā)散,∴∑vn發(fā)散n=1n+10n
7、=1o2條件收斂性n分析需判定u=遞減、趨于零nn+10n令xun==f(n),f(x)=(x>0)n+10x+101?(x+10)?x10?xQf′(x)=2x=2(x+10)22x(x+10)<0(x>10)∴當(dāng)x>10時(shí),f(x)單調(diào)減少,故當(dāng)n>10時(shí),f(n+1)10)n+1nn1又Qlimu=lim=lim=0nn→∞n→∞n+10n→∞10n+n∞n(?1)n∴由萊尼布茨判別法知∑收斂.n+10n=1∞n(?1)n綜合1o,2o可知:∑條件收斂.n+10n=1注1o用萊布尼茨判別法判斷交錯(cuò)級(jí)數(shù)∞∑(?
8、1)n?1u(u>0)nnn=1是否收斂時(shí),要考察{u}是否單調(diào)減少,通常n有以下三種方法:u?on+1≤1(n≥N)1比值法:un?ou?u≤n≥N2差值法:n+1n0()o3函數(shù)法:由un