資源描述:
《人教A版高數(shù)學(xué)導(dǎo)學(xué)案教案 1.1.3》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。
1、1.1.3解三角形的進(jìn)一步討論(一)教學(xué)目標(biāo)1.知識(shí)與技能:掌握在已知三角形的兩邊及其中一邊的對(duì)角解三角形時(shí),有兩解或一解或無(wú)解等情形;三角形各種類型的判定方法;三角形面積定理的應(yīng)用。2.過(guò)程與方法:通過(guò)引導(dǎo)學(xué)生分析,解答三個(gè)典型例子,使學(xué)生學(xué)會(huì)綜合運(yùn)用正、余弦定理,三角函數(shù)公式及三角形有關(guān)性質(zhì)求解三角形問(wèn)題。3.情態(tài)與價(jià)值:通過(guò)正、余弦定理,在解三角形問(wèn)題時(shí)溝通了三角形的有關(guān)性質(zhì)和三角函數(shù)的關(guān)系,反映了事物之間的必然聯(lián)系及一定條件下相互轉(zhuǎn)化的可能,從而從本質(zhì)上反映了事物之間的內(nèi)在聯(lián)系。(二)教學(xué)重、難點(diǎn)重點(diǎn):
2、在已知三角形的兩邊及其中一邊的對(duì)角解三角形時(shí),有兩解或一解或無(wú)解等情形;三角形各種類型的判定方法;三角形面積定理的應(yīng)用。難點(diǎn):正、余弦定理與三角形的有關(guān)性質(zhì)的綜合運(yùn)用。(三)學(xué)法與教學(xué)用具學(xué)法:通過(guò)一些典型的實(shí)例來(lái)拓展關(guān)于解三角形的各種題型及其解決方法。教學(xué)用具:教學(xué)多媒體設(shè)備(四)教學(xué)設(shè)想[創(chuàng)設(shè)情景]思考:在ABC中,已知,,,解三角形。(由學(xué)生閱讀課本第9頁(yè)解答過(guò)程)從此題的分析我們發(fā)現(xiàn),在已知三角形的兩邊及其中一邊的對(duì)角解三角形時(shí),在某些條件下會(huì)出現(xiàn)無(wú)解的情形。下面進(jìn)一步來(lái)研究這種情形下解三角形的問(wèn)題。[
3、探索研究]例1.在ABC中,已知,討論三角形解的情況分析:先由可進(jìn)一步求出B;則從而1.當(dāng)A為鈍角或直角時(shí),必須才能有且只有一解;否則無(wú)解。2.當(dāng)A為銳角時(shí),如果≥,那么只有一解;如果,那么可以分下面三種情況來(lái)討論:(1)若,則有兩解;(2)若,則只有一解;(3)若,則無(wú)解。(以上解答過(guò)程詳見課本第910頁(yè))評(píng)述:注意在已知三角形的兩邊及其中一邊的對(duì)角解三角形時(shí),只有當(dāng)A為銳角且時(shí),有兩解;其它情況時(shí)則只有一解或無(wú)解。[隨堂練習(xí)1](1)在ABC中,已知,,,試判斷此三角形的解的情況。12(2)在ABC中,若,
4、,,則符合題意的b的值有_____個(gè)。(3)在ABC中,,,,如果利用正弦定理解三角形有兩解,求x的取值范圍。(答案:(1)有兩解;(2)0;(3))例2.在ABC中,已知,,,判斷ABC的類型。分析:由余弦定理可知(注意:)解:,即,∴。[隨堂練習(xí)2](1)在ABC中,已知,判斷ABC的類型。(2)已知ABC滿足條件,判斷ABC的類型。(答案:(1);(2)ABC是等腰或直角三角形)例3.在ABC中,,,面積為,求的值分析:可利用三角形面積定理以及正弦定理解:由得,則=3,即,從而[隨堂練習(xí)3](1)在ABC
5、中,若,,且此三角形的面積,求角C(2)在ABC中,其三邊分別為a、b、c,且三角形的面積,求角C(答案:(1)或;(2))[課堂小結(jié)](1)在已知三角形的兩邊及其中一邊的對(duì)角解三角形時(shí),有兩解或一解或無(wú)解等情形;(2)三角形各種類型的判定方法;(3)三角形面積定理的應(yīng)用。12(五)評(píng)價(jià)設(shè)計(jì)(課時(shí)作業(yè))(1)在ABC中,已知,,,試判斷此三角形的解的情況。(2)設(shè)x、x+1、x+2是鈍角三角形的三邊長(zhǎng),求實(shí)數(shù)x的取值范圍。(3)在ABC中,,,,判斷ABC的形狀。(4)三角形的兩邊分別為3cm,5cm,它們所夾
6、的角的余弦為方程的根,求這個(gè)三角形的面積。12