資源描述:
《(課件1)18.1勾股定理.ppt》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、18.1勾股定理人教版八年級(jí)(下)第十八章北京歡迎您!讀一讀我國(guó)古代把直角三角形中較短的直角邊稱為勾,較長(zhǎng)的直角邊稱為股,斜邊稱為弦.圖1-1稱為“弦圖”,最早是由三國(guó)時(shí)期的數(shù)學(xué)家趙爽在為《周髀算經(jīng)》作法時(shí)給出的.圖1-2是在北京召開的2002年國(guó)際數(shù)學(xué)家大會(huì)(TCM-2002)的會(huì)標(biāo),其圖案正是“弦圖”,它標(biāo)志著中國(guó)古代的數(shù)學(xué)成就.圖1-1圖1-2勾股定理(1)看一看相傳2500年前,一次畢達(dá)哥拉斯去朋友家作客,發(fā)現(xiàn)朋友家用磚鋪成的地面反映直角三角形三邊的某種數(shù)量關(guān)系,同學(xué)們,我們也來觀察下面的圖案,看看你能發(fā)現(xiàn)什么?ABCABC(圖
2、中每個(gè)小方格代表一個(gè)單位面積)圖2-1圖2-2(1)觀察圖2-1正方形A中含有個(gè)小方格,即A的面積是個(gè)單位面積。正方形B的面積是個(gè)單位面積。正方形C的面積是個(gè)單位面積。99918你是怎樣得到上面的結(jié)果的?與同伴交流交流。ABCABC(圖中每個(gè)小方格代表一個(gè)單位面積)圖2-1圖2-2分“割”成若干個(gè)直角邊為整數(shù)的三角形(單位面積)ABCABC(圖中每個(gè)小方格代表一個(gè)單位面積)圖2-1圖2-2(單位面積)把C“補(bǔ)”成邊長(zhǎng)為6的正方形面積的一半ABCABC(圖中每個(gè)小方格代表一個(gè)單位面積)圖2-1圖2-2(2)在圖2-2中,正方形A,B,C中
3、各含有多少個(gè)小方格?它們的面積各是多少?(3)你能發(fā)現(xiàn)圖2-1中三個(gè)正方形A,B,C的面積之間有什么關(guān)系嗎?SA+SB=SC即:兩條直角邊上的正方形面積之和等于斜邊上的正方形的面積ABC圖3-1ABC圖3-2分割成若干個(gè)直角邊為整數(shù)的三角形(面積單位)一般的直角三角形三邊為邊作正方形ABC圖3-1ABC圖3-2把C“補(bǔ)”成邊長(zhǎng)為7的正方形面積加1單位面積的一半(面積單位)思考:面積A,B,C還有上述關(guān)系嗎?ABC圖3-1ABC圖3-2(1)你能用三角形的邊長(zhǎng)表示正方形的面積嗎?(2)你能發(fā)現(xiàn)直角三角形三邊長(zhǎng)度之間存在什么關(guān)系嗎?與同伴進(jìn)
4、行交流。議一議ABCacbSa+Sb=Sc觀察所得到的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?猜想:兩直角邊a、b與斜邊c之間的關(guān)系?a2+b2=c2acb觀察所得到的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?猜想兩直角邊a、b與斜邊c之間的關(guān)系?a2+b2=c2Sa+Sb=Sc┏a2+b2=c2acb直角三角形兩直角邊的平方和等于斜邊的平方.勾股弦勾股定理(畢達(dá)哥拉斯定理)兩千多年前,古希臘有個(gè)哥拉斯學(xué)派,他們首先發(fā)現(xiàn)了勾股定理,因此在國(guó)外人們通常稱勾股定理為畢達(dá)哥拉斯年希臘曾經(jīng)發(fā)行了一枚紀(jì)念票。定理。為了紀(jì)念畢達(dá)哥拉斯學(xué)派,1955勾股世界國(guó)家之一。早在三千多年前,
5、國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前兩千多年前,古希臘有個(gè)畢達(dá)哥拉斯學(xué)派,他們首先發(fā)現(xiàn)了勾股定理,因此在國(guó)外人們通常稱勾股定理為畢達(dá)哥拉斯定理。為了紀(jì)念畢達(dá)哥拉斯學(xué)派,1955年希臘曾經(jīng)發(fā)行了一枚紀(jì)念郵票。我國(guó)是最早了解勾股定理的國(guó)家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被記載于我國(guó)古代著名的數(shù)學(xué)著作
6、《周髀算經(jīng)》中。1.求下列圖中表示邊的未知數(shù)x、y、z的值.①81144xyz②③做一做625576144169做一做:P62540026xP的面積=______________X=____________225BACAB=__________AC=__________BC=__________251520比一比看看誰算得快!2.求下列直角三角形中未知邊的長(zhǎng):可用勾股定理建立方程.方法小結(jié):8x171620x125x做一做1、如圖,一個(gè)高3米,寬4米的大門,需在相對(duì)角的頂點(diǎn)間加一個(gè)加固木條,則木條的長(zhǎng)為()A.3米B.4米C.5米D.6
7、米C342、湖的兩端有A、B兩點(diǎn),從與BA方向成直角的BC方向上的點(diǎn)C測(cè)得CA=130米,CB=120米,則AB為()ABCA.50米B.120米C.100米D.130米130120?A如圖,大風(fēng)將一根木制旗桿吹裂,隨時(shí)都可能倒下,十分危急。接警后“119”迅速趕到現(xiàn)場(chǎng),并決定從斷裂處將旗桿折斷。現(xiàn)在需要?jiǎng)澇鲆粋€(gè)安全警戒區(qū)域,那么你能確定這個(gè)安全區(qū)域的半徑至少是多少米嗎?議一議:9m24m?勾股定理的幾種證明黃實(shí)朱實(shí)朱實(shí)朱實(shí)朱實(shí)baacab趙爽弦圖acbabcabcabc1876年4月1日,伽菲爾德在《新英格蘭教育日志》上發(fā)表了他對(duì)勾股
8、定理的這一證法。1881年,伽菲爾德就任美國(guó)第20任總統(tǒng)。后來,人們?yōu)榱思o(jì)念他對(duì)勾股定理直觀、簡(jiǎn)捷、易懂、明了的證明,就把這一證法稱為“總統(tǒng)證法”。無字證明青出朱方青方朱入朱出青入青入青出青出abc無字證明