資源描述:
《優(yōu)化復(fù)習(xí)教學(xué)提高復(fù)習(xí)效率.doc》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、初中數(shù)學(xué)總復(fù)習(xí)并不是對以前所教的知識進(jìn)行簡單的回憶和再現(xiàn)。最主要的是要通過對知識系統(tǒng)復(fù)習(xí),使每一章節(jié)中的各個知識點(diǎn)聯(lián)系起來,找出其變化規(guī)律、性質(zhì)相似之處及不同點(diǎn)等從而形成完整的知識體系,達(dá)到以點(diǎn)成線,以線成面,以面成體的目的,只有這樣學(xué)生才能把所學(xué)的知識融會貫通。 一、章節(jié)復(fù)習(xí)——善于轉(zhuǎn)化 我國著名數(shù)學(xué)家華羅庚先生指出“學(xué)習(xí)有兩個過程,一個是從薄到厚”,前者是“量”的積累,后者則是質(zhì)的飛躍,教師在復(fù)習(xí)過程中,不僅應(yīng)該要求學(xué)生對所學(xué)的知識、典型的例題進(jìn)行反思,而且還應(yīng)該重視對學(xué)生鞏固所學(xué)的知識
2、由“量”到“質(zhì)”的飛躍這一轉(zhuǎn)化過程。按常規(guī)的方式進(jìn)行復(fù)習(xí),通常是按照課本的順序把學(xué)生學(xué)過的知識,如數(shù)學(xué)概念、法則、公式和性質(zhì)等原本地復(fù)述梳理一遍。這樣做學(xué)生感到乏味又不易記憶。針對這一情況,我在復(fù)習(xí)概念時,采用章節(jié)知識歸類編碼法,即先列出所要復(fù)習(xí)的知識要點(diǎn),然后歸類排隊(duì),再用數(shù)字編碼,這樣做可增加學(xué)生復(fù)習(xí)的興趣,增強(qiáng)學(xué)生的記憶和理解,最主要的是起點(diǎn)了把章節(jié)知識由量到質(zhì)的飛躍,實(shí)現(xiàn)厚薄間的轉(zhuǎn)化?! ±?,復(fù)習(xí)“直線、線段、射線”這一節(jié)內(nèi)容,我把主要知識編碼成(1)(2)(3)(4)。(1)——一個
3、基礎(chǔ);(2)——兩個要點(diǎn);(3)——三種延伸;(4)——四個異同點(diǎn)。這種復(fù)習(xí)提綱一提出,學(xué)生思維立即活躍,有的在思維,有的在議論,有的在閱讀課本,設(shè)法尋找提綱的答案,我趁勢把知識進(jìn)行必要的講解和點(diǎn)撥,其答案如下:(1)——一個基礎(chǔ)。是指以直線為基本圖形,線段和射線是直線上的一部分。(2)——兩個要點(diǎn)。①兩點(diǎn)確定一條直線;②兩條直線相交只有1個交點(diǎn)。(3)——三種延伸。三種圖形的延伸。直線可以向兩方無限延伸;線段不能延伸;射線可以向一方無限延伸。(4)四個異同點(diǎn)。①端點(diǎn)個數(shù)不同;②圖形特征不同;③
4、表示方法不同;④描述的定義不同;事實(shí)證明,這種善于轉(zhuǎn)化的復(fù)習(xí)確實(shí)能提高復(fù)習(xí)效率。 二、例題講解——善于變化 復(fù)習(xí)課例題的選擇,應(yīng)是最有代表性和最能說明問題的典型習(xí)題。應(yīng)能突出重點(diǎn),反映大綱最主要、最基本的內(nèi)容和要求。對例題進(jìn)行分析和解答,發(fā)揮例題以點(diǎn)帶面的作用,有意識有目的地在例題的基礎(chǔ)上作系列的變化,達(dá)到能挖掘問題的內(nèi)涵和外延、在變化中鞏固知識、在運(yùn)動中尋找規(guī)律的目的,實(shí)現(xiàn)復(fù)習(xí)的知識從量到質(zhì)的轉(zhuǎn)變?! ±?,在復(fù)習(xí)二次函數(shù)的內(nèi)容時,我舉了這樣一個例題:二次函數(shù)的圖象經(jīng)過點(diǎn)(0,0)與(-1
5、,-1),開口向上,且在x軸上截得的線段長為2。求它的解析式。因?yàn)槎魏瘮?shù)的圖象拋物線是軸對稱圖形,由題意畫圖后,不難看出(-1,-1)是頂點(diǎn),所以可用二次函數(shù)的頂點(diǎn)式y(tǒng)=-a(x+m)2+n,再求得它的解析式(解法略)。在數(shù)學(xué)中我對例題作了變化,把題例中的條件“拋物線在x軸上截得的線段2改成4”,求解析式。變化后,由題意畫圖可知(-1,-1)不再是拋物線的頂點(diǎn),但從圖中看出,圖像除了經(jīng)過已知條件的兩個點(diǎn)外,還經(jīng)過一點(diǎn)(-4,0),所以可用y=a(x-x1)(x-x2)的形式求出它的解析式。再對
6、例題進(jìn)行變化,把題目中的“開口向上”這一條件去掉,求解析式。再次變化后,此題可有兩種情況(i)開口向上;(ii)開口向下;所有有兩個結(jié)論。