資源描述:
《解排列組合問題的常用策略.ppt》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、解排列組合問題的常用策略名稱內(nèi)容分類原理分步原理定義相同點(diǎn)不同點(diǎn)兩個(gè)原理的區(qū)別與聯(lián)系:做一件事或完成一項(xiàng)工作的方法數(shù)直接(分類)完成間接(分步驟)完成做一件事,完成它可以有n類辦法,第一類辦法中有m1種不同的方法,第二類辦法中有m2種不同的方法…,第n類辦法中有mn種不同的方法,那么完成這件事共有N=m1+m2+m3+…mn種不同的方法做一件事,完成它可以有n個(gè)步驟,做第一步中有m1種不同的方法,做第二步中有m2種不同的方法……,做第n步中有mn種不同的方法,那么完成這件事共有N=m1·m2·m3
2、·…·mn種不同的方法.回目錄1.排列和組合的區(qū)別和聯(lián)系:名稱排列組合定義種數(shù)符號(hào)計(jì)算公式關(guān)系性質(zhì),從n個(gè)不同元素中取出m個(gè)元素,按一定的順序排成一列從n個(gè)不同元素中取出m個(gè)元素,把它并成一組所有排列的的個(gè)數(shù)所有組合的個(gè)數(shù)回目錄某校組織學(xué)生分4個(gè)組從3處風(fēng)景點(diǎn)中選一處去春游,則不同的春游方案的種數(shù)是A.B.C.D.(選C)回目錄將數(shù)字1、2、3、4填入標(biāo)號(hào)為1、2、3、4的四個(gè)方格里,每格填一個(gè)數(shù)字,則每個(gè)方格的標(biāo)號(hào)與所填的數(shù)字都不相同的填法共有A.6種B.9種C.11種D.23種(3×3×1=9
3、.可用框圖具體填寫)回目錄判斷下列問題是組合問題還是排列問題?(1)設(shè)集合A={a,b,c,d,e},則集合A的含有3個(gè)元素的子集有多少個(gè)?(2)某鐵路線上有5個(gè)車站,則這條鐵路線上共需準(zhǔn)備多少種車票?有多少種不同的火車票價(jià)?組合問題排列問題(3)10名同學(xué)分成人數(shù)相同的數(shù)學(xué)和英語兩個(gè)學(xué)習(xí)小組,共有多少種分法?組合問題(4)10人聚會(huì),見面后每?jī)扇酥g要握手相互問候,共需握手多少次?組合問題(5)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè)安排游覽,有多少種不同的方法?組合問題(6)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè),并確定這
4、2個(gè)風(fēng)景點(diǎn)的游覽順序,有多少種不同的方法?排列問題組合問題回目錄總的原則—合理分類和準(zhǔn)確分步解法1分析:先安排甲,按照要求對(duì)其進(jìn)行分類,分兩類:根據(jù)分步及分類計(jì)數(shù)原理,不同的站法共有例16個(gè)同學(xué)和2個(gè)老師排成一排照相,2個(gè)老師站中間,學(xué)生甲不站排頭,學(xué)生乙不站排尾,共有多少種不同的排法?1)若甲在排尾上,則剩下的5人可自由安排,有種方法.若甲在第2、3、6、7位,則排尾的排法有種,1位的排法有種,第2、3、6、7位的排法有種,根據(jù)分步計(jì)數(shù)原理,不同的站法有種。再安排老師,有2種方法?;啬夸洶盐辗诸?/p>
5、原理、分步原理是基礎(chǔ)例1如圖,某電子器件是由三個(gè)電阻組成的回路,其中有6個(gè)焊接點(diǎn)A,B,C,D,E,F(xiàn),如果某個(gè)焊接點(diǎn)脫落,整個(gè)電路就會(huì)不通?,F(xiàn)發(fā)現(xiàn)電路不通了,那么焊接點(diǎn)脫落的可能性共有()(A)63種(B)64種(C)6種(D)36種分析:由加法原理可知由乘法原理可知2×2×2×2×2×2-1=63回目錄(1)0,1,2,3,4,5可組成多少個(gè)無重復(fù)數(shù)字且能被五整除的五位數(shù)?練習(xí)1分類:個(gè)位數(shù)字為5或0:個(gè)位數(shù)為0:個(gè)位數(shù)為5:回目錄(2)0,1,2,3,4,5可組成多少個(gè)無重復(fù)數(shù)字且大于312
6、50的五位數(shù)?分類:引申1:31250是由0,1,2,3,4,5組成的無重復(fù)數(shù)字的五位數(shù)中從小到大第幾個(gè)數(shù)?方法一:(排除法)方法二:(直接法)回目錄(2005·福建·理)從6人中選4人分別到巴黎、倫敦、悉尼、莫斯科四個(gè)城市游覽,要求每個(gè)城市有一人游覽,每人只游覽一個(gè)城市,且這6人中甲、乙兩人不去巴黎游覽,則不同的選擇方案共有()A.300種B.240種C.144種D.96種B(間接法)回目錄(直接法)分三種情況:情況一,不選甲、乙兩個(gè)去游覽情況二:甲、乙中有一人去游覽情況三:甲、乙兩人都去游覽綜
7、上不同的選擇方案共有2401.從4名男生和3名女生中選出4人參加某個(gè)座談會(huì),若這4人中必須既有男生又有女生,則不同的選法共有_______34練習(xí)題2.3成人2小孩乘船游玩,1號(hào)船最多乘3人,2號(hào)船最多乘2人,3號(hào)船只能乘1人,他們?nèi)芜x2只船或3只船,但小孩不能單獨(dú)乘一只船,這3人共有多少乘船方法.27回目錄特殊元素和特殊位置優(yōu)先策略例1.由0,1,2,3,4,5可以組成多少個(gè)沒有重復(fù)數(shù)字五位奇數(shù).解:由于末位和首位有特殊要求,應(yīng)該優(yōu)先安排,以免不合要求的元素占了這兩個(gè)位置先排末位共有___然后排
8、首位共有___最后排其它位置共有___由分步計(jì)數(shù)原理得=288回目錄特殊元素(或位置)優(yōu)先安排例將5列車停在5條不同的軌道上,其中a列車不停在第一軌道上,b列車不停在第二軌道上,那么不同的停放方法有()(A)120種(B)96種(C)78種(D)72種解:(1)(2005·北京·文)五個(gè)工程隊(duì)承建某項(xiàng)工程的5個(gè)不同的子項(xiàng)目,每個(gè)工程隊(duì)承建1項(xiàng),其中甲工程隊(duì)不能承建1號(hào)子項(xiàng)目,則不同的承建方案共有()種。(2)(2005·全國(guó)II·理)在由數(shù)字0,1,2,3,4,5所組成的沒有重復(fù)數(shù)