中考數(shù)學(xué)第一輪復(fù)習(xí)第二單元方程(組)與不等式(組).ppt

中考數(shù)學(xué)第一輪復(fù)習(xí)第二單元方程(組)與不等式(組).ppt

ID:52039348

大?。?.45 MB

頁數(shù):138頁

時間:2020-03-30

中考數(shù)學(xué)第一輪復(fù)習(xí)第二單元方程(組)與不等式(組).ppt_第1頁
中考數(shù)學(xué)第一輪復(fù)習(xí)第二單元方程(組)與不等式(組).ppt_第2頁
中考數(shù)學(xué)第一輪復(fù)習(xí)第二單元方程(組)與不等式(組).ppt_第3頁
中考數(shù)學(xué)第一輪復(fù)習(xí)第二單元方程(組)與不等式(組).ppt_第4頁
中考數(shù)學(xué)第一輪復(fù)習(xí)第二單元方程(組)與不等式(組).ppt_第5頁
資源描述:

《中考數(shù)學(xué)第一輪復(fù)習(xí)第二單元方程(組)與不等式(組).ppt》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。

1、第6講一次方程(組)及其應(yīng)用第7講一元二次方程及其應(yīng)用第8講分式方程及其應(yīng)用第9講一元一次不等式(組)第10講一元一次不等式(組)的應(yīng)用第二單元方程(組)與不等式(組)目 錄·新課標(biāo)第二單元 方程(組)與不等式(組)第二單元 方程(組)與不等式(組)·新課標(biāo)第6講 一次方程(組)及其應(yīng)用·新課標(biāo)│考點(diǎn)隨堂練│考點(diǎn)1一元一次方程及其解法·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)考點(diǎn)2二元一次方程組及其解法·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)考點(diǎn)3一次方程(組)的應(yīng)用·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)·

2、新課標(biāo)歸類示例類型之一 等式的概念和等式的性質(zhì)2·新課標(biāo)·新課標(biāo)·新課標(biāo)?類型之二 一元一次方程的解法分式的基本性質(zhì)等式性質(zhì)2·新課標(biāo)去括號法則或乘法分配律等式性質(zhì)1合并同類項等式性質(zhì)2系數(shù)化為1移項·新課標(biāo)·新課標(biāo)?類型之三 二元一次方程(組)的有關(guān)概念·新課標(biāo)·新課標(biāo)類型之四 二元一次方程組的解法[解析]解二元一次方程組常用加減法或代入法.·新課標(biāo)·新課標(biāo)?類型之五 利用一次方程(組)解決生活實際問題·新課標(biāo)大橋名稱舟山跨海大橋杭州灣跨海大橋大橋長度48千米36千米過橋費(fèi)100元80元·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)第7講 一

3、元二次方程及其應(yīng)用·新課標(biāo)│考點(diǎn)隨堂練│考點(diǎn)1一元二次方程的有關(guān)概念·新課標(biāo)·新課標(biāo)·新課標(biāo)考點(diǎn)2一元二次方程的解法·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)考點(diǎn)3一元二次方程根的判別式,根與系數(shù)的關(guān)系·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)考點(diǎn)4一元二次方程的應(yīng)用·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)歸類示例?類型之一 一元二次方程的有關(guān)概念A(yù)·新課標(biāo)?類型之二 一元二次方程的解法·新課標(biāo)·新課標(biāo)·新課標(biāo)類型之三 一元二次方程根的判別式C·新課標(biāo)·新課標(biāo)·新課標(biāo)類型之四(選講)一元二次方程的根與系數(shù)的關(guān)系·新課標(biāo)[解析](1)一

4、元二次方程有兩個實根的條件是Δ≥0,二次項系數(shù)不等于零.(2)根據(jù)一元二次方程根與系數(shù)的關(guān)系,得x1+x2=-2,x1x2=k+1.·新課標(biāo)·新課標(biāo)·新課標(biāo)類型之五 一元二次方程的應(yīng)用·新課標(biāo)·新課標(biāo)·新課標(biāo)第8講 分式方程及其應(yīng)用·新課標(biāo)│考點(diǎn)隨堂練│考點(diǎn)1分式方程及相關(guān)概念·新課標(biāo)·新課標(biāo)考點(diǎn)2分式方程的解法·新課標(biāo)·新課標(biāo)·新課標(biāo)考點(diǎn)3分式方程的應(yīng)用·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)歸類示例?類型之一 分式方程的概念m>2且m≠3·新課標(biāo)類型之二 分式方程的解法[解析]去分母,把分式方程化為整式方程.·新課標(biāo)?類型之三

5、 分式方程的應(yīng)用·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)第9講 一元一次不等式(組)·新課標(biāo)│考點(diǎn)隨堂練│考點(diǎn)1不等式的性質(zhì)及一元一次不等式(組)的相關(guān)概念·新課標(biāo)·新課標(biāo)考點(diǎn)2一元一次不等式的解法·新課標(biāo)·新課標(biāo)·新課標(biāo)考點(diǎn)3一元一次不等式組的解法·新課標(biāo)·新課標(biāo)·新課標(biāo)歸類示例·新課標(biāo)?類型之一 不等式的概念及性質(zhì)B·新課標(biāo)[解析]A不正確,當(dāng)c≤0時不正確;C不正確,不等式兩邊同時乘一個負(fù)數(shù),不等式方向改變;D不正確,不等式的兩邊同時減去同一個數(shù),不等式的方向不變.·新課標(biāo)D·新課標(biāo)·新課標(biāo)類型之二 一元一次不等式·新課標(biāo)·新課標(biāo)[

6、解析](1)解不等式一般步驟:去分母,去括號,移項,合并同類項,系數(shù)化為1.(2)去分母注意右邊1也要乘以6.·新課標(biāo)·新課標(biāo)類型之三 一元一次不等式組·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)類型之四 與一元一次不等式(組)解集有關(guān)的問題·新課標(biāo)D[解析]此不等式組的解為3≤x<m,共有4個整數(shù)解,應(yīng)為3,4,5,6.故6<m≤7.·新課標(biāo)·新課標(biāo)·新課標(biāo)第10講一元一次不等式(組)的應(yīng)用·新課標(biāo)│考點(diǎn)隨堂練│考點(diǎn)1一元一次不等式(組)的應(yīng)用·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)考點(diǎn)2一元一次不等式的應(yīng)用·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)

7、·新課標(biāo)·新課標(biāo)歸類示例·新課標(biāo)?類型之一 利用一元一次不等式(組)確定取值范圍·新課標(biāo)·新課標(biāo)·新課標(biāo)類型之二 利用一元一次不等式(組)解決其他問題·新課標(biāo)圖10-1·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)類型之三 利用一元一次不等式(組)進(jìn)行方案設(shè)計·新課標(biāo)·新課標(biāo)·新課標(biāo)·新課標(biāo)

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。