大學物理作業(yè)答案

大學物理作業(yè)答案

ID:13106420

大小:1.22 MB

頁數(shù):18頁

時間:2018-07-20

大學物理作業(yè)答案_第1頁
大學物理作業(yè)答案_第2頁
大學物理作業(yè)答案_第3頁
大學物理作業(yè)答案_第4頁
大學物理作業(yè)答案_第5頁
資源描述:

《大學物理作業(yè)答案》由會員上傳分享,免費在線閱讀,更多相關內容在教育資源-天天文庫。

1、18大學物理作業(yè)答案第一章作業(yè)解答1-3一質點在平面上運動,運動方程為=3+5,=2+3-4.式中以s計,,以m計.(1)以時間為變量,寫出質點位置矢量的表示式;(2)求出=1s時刻和=2s時刻的位置矢量,計算這1秒內質點的位移;(3)計算=0s時刻到=4s時刻內的平均速度;(4)求出質點速度矢量表示式,計算=4s時質點的速度;(5)計算=0s到=4s內質點的平均加速度;(6)求出質點加速度矢量的表示式,計算=4s時質點的加速度(請把位置矢量、位移、平均速度、瞬時速度、平均加速度、瞬時加速度都表示成直角坐標系中的矢量式).解:(1)(2)將,代入上式即有(3)∵∴(4)則(5)∵(6)這說明

2、該點只有方向的加速度,且為恒量。1-5質點沿軸運動,其加速度和位置的關系為=2+6,的單位為,的單位為m.質點在=0處,速度為10,試求質點在任何坐標處的速度值.解:∵分離變量:18大學物理作業(yè)答案兩邊積分得由題知,時,,∴∴1-6已知一質點作直線運動,其加速度為=4+3,開始運動時,=5m,=0,求該質點在=10s時的速度和位置.解:∵分離變量,得積分,得由題知,,,∴故又因為分離變量,積分得由題知,,∴故所以時1-7一質點沿半徑為1m的圓周運動,運動方程為=2+3,式中以弧度計,以秒計,求:(1)=2s時,質點的切向和法向加速度;(2)當加速度的方向和半徑成45°角時,其角位移是多少?

3、解:(1)時,18大學物理作業(yè)答案(2)當加速度方向與半徑成角時,有即亦即則解得于是角位移為第二章作業(yè)解答2-9一質量為的質點在平面上運動,其位置矢量為求質點的動量及=0到時間內質點所受的合力的沖量和質點動量的改變量.解:質點的動量為將和分別代入上式,得,,則動量的增量亦即質點所受外力的沖量為2-12設.(1)當一質點從原點運動到時,求所作的功.(2)如果質點到處時需0.6s,試求平均功率.(3)如果質點的質量為1kg,試求動能的變化.解:(1)由題知,為恒力,∴(2)(3)由動能定理,18大學物理作業(yè)答案2-26固定在一起的兩個同軸均勻圓柱體可繞其光滑的水平對稱軸轉動.設大小圓柱體的半徑

4、分別為和,質量分別為和.繞在兩柱體上的細繩分別與物體和相連,和則掛在圓柱體的兩側,如題2-26圖所示.設=0.20m,=0.10m,=4kg,=10kg,==2kg,且開始時,離地均為=2m.求:(1)柱體轉動時的角加速度;(2)兩側細繩的張力.解:設,和β分別為,和柱體的加速度及角加速度,方向如圖(如圖b). 題2-26(a)圖題2-26(b)圖(1),和柱體的運動方程如下:①②③式中而由上式求得(2)由①式18大學物理作業(yè)答案由②式2-27計算題2-27圖所示系統(tǒng)中物體的加速度.設滑輪為質量均勻分布的圓柱體,其質量為,半徑為,在繩與輪緣的摩擦力作用下旋轉,忽略桌面與物體間的摩擦,設=50

5、kg,=200kg,M=15kg,=0.1m解:分別以,滑輪為研究對象,受力圖如圖(b)所示.對,運用牛頓定律,有①②對滑輪運用轉動定律,有③又,④聯(lián)立以上4個方程,得題2-27(a)圖題2-27(b)圖題2-28圖2-28如題2-28圖所示,一勻質細桿質量為,長為,可繞過一端的水平軸自由轉動,桿于水平位置由靜止開始擺下.求:(1)初始時刻的角加速度;(2)桿轉過角時的角速度.解:(1)由轉動定律,有18大學物理作業(yè)答案∴(2)由機械能守恒定律,有∴第四章作業(yè)解答4-3如題4-3圖所示,物體的質量為,放在光滑斜面上,斜面與水平面的夾角為,彈簧的倔強系數(shù)為,滑輪的轉動慣量為,半徑為.先把物體托住

6、,使彈簧維持原長,然后由靜止釋放,試證明物體作簡諧振動,并求振動周期.題4-3圖解:分別以物體和滑輪為對象,其受力如題4-3圖(b)所示,以重物在斜面上靜平衡時位置為坐標原點,沿斜面向下為軸正向,則當重物偏離原點的坐標為時,有①②③式中,為靜平衡時彈簧之伸長量,聯(lián)立以上三式,有令則有故知該系統(tǒng)是作簡諧振動,其振動周期為18大學物理作業(yè)答案4-4質量為的小球與輕彈簧組成的系統(tǒng),按的規(guī)律作諧振動,求:(1)振動的周期、振幅和初位相及速度與加速度的最大值;(2)最大的回復力、振動能量、平均動能和平均勢能,在哪些位置上動能與勢能相等?(3)與兩個時刻的位相差;解:(1)設諧振動的標準方程為,則知:又(

7、2)當時,有,即∴(3)4-5一個沿軸作簡諧振動的彈簧振子,振幅為,周期為,其振動方程用余弦函數(shù)表示.如果時質點的狀態(tài)分別是:(1);(2)過平衡位置向正向運動;(3)過處向負向運動;(4)過處向正向運動.試求出相應的初位相,并寫出振動方程.解:因為將以上初值條件代入上式,使兩式同時成立之值即為該條件下的初位相.故有18大學物理作業(yè)答案4-6一質量為的物體作諧振動,振幅為,周期為,當時位移為.求:

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內容,確認文檔內容符合您的需求后進行下載,若出現(xiàn)內容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。