函數(shù)概念教學(xué)的幾點思考

函數(shù)概念教學(xué)的幾點思考

ID:25399024

大小:50.00 KB

頁數(shù):5頁

時間:2018-11-20

函數(shù)概念教學(xué)的幾點思考_第1頁
函數(shù)概念教學(xué)的幾點思考_第2頁
函數(shù)概念教學(xué)的幾點思考_第3頁
函數(shù)概念教學(xué)的幾點思考_第4頁
函數(shù)概念教學(xué)的幾點思考_第5頁
資源描述:

《函數(shù)概念教學(xué)的幾點思考》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、函數(shù)概念教學(xué)的幾點思考摘要:函數(shù)的概念及相關(guān)內(nèi)容是高中和職業(yè)類教材中非常重要的部分,許多學(xué)生認(rèn)為這些內(nèi)容比較抽象、難懂、圖像多,方法靈活多樣。以致部分學(xué)生對函數(shù)知識產(chǎn)生恐懼感。就教學(xué)過程中學(xué)生的反應(yīng)和自己的反思,淺淡幾點自己的看法。關(guān)鍵詞:函數(shù);對應(yīng);映射;數(shù)形結(jié)合1要把握函數(shù)的實質(zhì).L.編輯?! ?7世紀(jì)初期,笛卡爾在引入變量概念之后,就有了函數(shù)的思想,把函數(shù)一詞用作數(shù)學(xué)術(shù)語的是萊布尼茲,歐拉在1734年首次用f(x)作為函數(shù)符號。關(guān)于函數(shù)概念有“變量說”、“對應(yīng)說”、“集合說”等。變量說的定義是:設(shè)x、y是兩

2、個變量,如果當(dāng)變量x在實數(shù)的某一范圍內(nèi)變化時,變量y按一定規(guī)律隨x的變化而變化。我們稱x為自變量,變量y叫變量x的函數(shù),記作y=f(x)。初中教材中的定義為:如果在某個變化過程中有兩個變量x、y,并且對于x在某個范圍內(nèi)的每一個確定的值,按照某個對應(yīng)法則,y都有唯一確定的值與之對應(yīng),那么y就是x的函數(shù),x叫自變量,x的取值范圍叫函數(shù)的定義域,和x的值對應(yīng)的y的值叫函數(shù)值,函數(shù)值的集合叫函數(shù)的值域。它的優(yōu)點是自然、形像和直觀、通俗地描述了變化,它致命的弊端就是對函數(shù)的實質(zhì)——對應(yīng)缺少充分地刻畫,以致不能明確函數(shù)是x、

3、y雙方變化的總體,卻把y定義成x的函數(shù),這與函數(shù)是反映變量間的關(guān)系相悖,究竟函數(shù)是指f,還是f(x),還是y=f(x)?使學(xué)生不易區(qū)別三者的關(guān)系?! 〉侠锖杖R(P.G.Dirichlet)注意到了“對應(yīng)關(guān)系”,于1837年提出:對于在某一區(qū)間上的每一確定的x值,y都有一個或多個確定的值與之對應(yīng),那么y叫x的一個函數(shù)。19世紀(jì)70年代集合論問世后,明確把集合到集合的單值對應(yīng)稱為映射,并把:“一切非空集合到數(shù)集的映射稱為函數(shù)”,函數(shù)是映射概念的推廣。對應(yīng)說的優(yōu)點有:①它抓住了函數(shù)的實質(zhì)——對應(yīng),是一種對應(yīng)法則。②它以

4、集合為基礎(chǔ),更具普遍性。③它將抽像的知識以模型并賦予生活化,比如:某班每一位同學(xué)與身高(實數(shù))的對應(yīng);某班同學(xué)在某次測試的成績的對應(yīng);全校學(xué)生與某天早上吃的饅頭數(shù)的對應(yīng)等都是函數(shù)。函數(shù)由定義域、值域、對應(yīng)法則共同刻劃,它們相互獨立,缺一不可。這樣很明確的指出了函數(shù)的實質(zhì)?! τ诩险f是考慮到集合是數(shù)學(xué)中一個最原始的概念,而函數(shù)的定義里的“對應(yīng)”卻是一個外加的形式,,似乎不是集合語言,1914年豪斯道夫(F.Hausdorff)采用了純集合論形式的定義:如果集合fС{(x,y)

5、x∈A,y∈B}且滿足條件,對于每

6、一個x∈A,若(x,y1)∈f,(x,y2)∈f,則y1=y2,這時就稱集合f為A到B的一個函數(shù)。這里f為直積A×B={(x,y)

7、x∈A,y∈B}的一個特殊子集,而序偶(x,y)又是用集合定義的:(x,y)={{x},{x,y}}.定義過于形式化,它舍棄了函數(shù)關(guān)系生動的直觀,既看不出對應(yīng)法則的形式,更沒有解析式,不但不易為中學(xué)生理解,而且在推導(dǎo)中也不便使用,如此完全化的數(shù)學(xué)語言只能在計算機中應(yīng)用。  2加強數(shù)形結(jié)合  數(shù)學(xué)是人們對客觀世界定性把握和定量刻畫、逐漸抽像概括、形成方法和理論,并進行廣泛應(yīng)用的過程。在

8、7—12年級所研究的函數(shù)主要是冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)和三角函數(shù),對每一類函數(shù)都是利用其圖像來研究其性質(zhì)的,作圖在教學(xué)中顯得無比重要。我認(rèn)為這一部分的教學(xué)要做到學(xué)生心中有形,函數(shù)圖像就相當(dāng)于佛教教徒心中各種各樣的佛像,只要心中有形,函數(shù)性質(zhì)就比較直觀,處理問題時就會得心應(yīng)手。函數(shù)觀念和數(shù)形結(jié)合在數(shù)列及平面幾何中也有廣泛的應(yīng)用。如函數(shù)y=log0.5

9、x2-x-12

10、單調(diào)區(qū)間,令t=

11、x2-x-12

12、=

13、(x-?)2-12.25

14、,t=0時,x=-3或x=4,知t函數(shù)的圖像是變形后的拋物線,其對稱軸為x=?與x軸

15、的交點是x=-3或x=4并開口向上,其x∈(-3,4)的部分由x軸下方翻轉(zhuǎn)到x軸上方,再考慮對數(shù)函數(shù)性質(zhì)即可。又如:判定方程3x2+6x=1x的實數(shù)根的個數(shù),該方程實根個數(shù)就是兩個函數(shù)y=3x2+6x與y=1/x圖像的交點個數(shù),作出圖像交點個數(shù)便一目了然。.L.編輯?! ?將映射概念下放  就前面三種函數(shù)概念而言,能提示函數(shù)實質(zhì)的只有“對應(yīng)說”,如果在初中階段把“變量說”的定義替換成“對應(yīng)說”的定義,可有以下優(yōu)點:⑴體現(xiàn)數(shù)學(xué)知識的系統(tǒng)性,也顯示出時代信息,為學(xué)生今后的學(xué)習(xí)作準(zhǔn)備。⑵凸顯數(shù)學(xué)內(nèi)容的生活化和現(xiàn)實性,函

16、數(shù)是刻畫現(xiàn)實世界數(shù)量變化規(guī)律的數(shù)學(xué)模型。⑶變抽像內(nèi)容形像化,替換后學(xué)生會感到函數(shù)概念不再那么抽像難懂,好像伸手會觸摸到一樣,身邊到處都有函數(shù)。學(xué)生就會感到函數(shù)不再那么可怕,它無非是一種映射。只需將集合論的初步知識下放一些即可,學(xué)生完全能夠接受,因為從小學(xué)第一學(xué)段就已接觸到集合的表示方法,第二學(xué)段已接觸到集合的運算,沒有必要作過多擔(dān)心。以前有人提出將概率知識下放的觀點,當(dāng)時

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。