數(shù)理統(tǒng)計第31講

數(shù)理統(tǒng)計第31講

ID:46155194

大小:1.32 MB

頁數(shù):46頁

時間:2019-11-21

數(shù)理統(tǒng)計第31講_第1頁
數(shù)理統(tǒng)計第31講_第2頁
數(shù)理統(tǒng)計第31講_第3頁
數(shù)理統(tǒng)計第31講_第4頁
數(shù)理統(tǒng)計第31講_第5頁
資源描述:

《數(shù)理統(tǒng)計第31講》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。

1、假設(shè)檢驗參數(shù)假設(shè)檢驗非參數(shù)假設(shè)檢驗這類問題稱作假設(shè)檢驗問題.總體分布已知,檢驗關(guān)于未知參數(shù)的某個假設(shè)總體分布未知時的假設(shè)檢驗問題在本講中,我們將討論不同于參數(shù)估計的另一類重要的統(tǒng)計推斷問題.這就是根據(jù)樣本的信息檢驗關(guān)于總體的某個假設(shè)是否正確.讓我們先看一個例子.這一講我們討論對參數(shù)的假設(shè)檢驗.生產(chǎn)流水線上罐裝可樂不斷地封裝,然后裝箱外運.怎么知道這批罐裝可樂的容量是否合格呢?把每一罐都打開倒入量杯,看看容量是否合于標準.這樣做顯然不行!罐裝可樂的容量按標準應(yīng)在350毫升和360毫升之間.每隔一定時間,抽查若干罐.如每隔1小時,抽查5罐,得5個容量的值X1,…,X5,根

2、據(jù)這些值來判斷生產(chǎn)是否正常.如發(fā)現(xiàn)不正常,就應(yīng)停產(chǎn),找出原因,排除故障,然后再生產(chǎn);如沒有問題,就繼續(xù)按規(guī)定時間再抽樣,以此監(jiān)督生產(chǎn),保證質(zhì)量.通常的辦法是進行抽樣檢查.很明顯,不能由5罐容量的數(shù)據(jù),在把握不大的情況下就判斷生產(chǎn)不正常,因為停產(chǎn)的損失是很大的.當然也不能總認為正常,有了問題不能及時發(fā)現(xiàn),這也要造成損失.如何處理這兩者的關(guān)系,假設(shè)檢驗面對的就是這種矛盾.在正常生產(chǎn)條件下,由于種種隨機因素的影響,每罐可樂的容量應(yīng)在355毫升上下波動.這些因素中沒有哪一個占有特殊重要的地位.因此,根據(jù)中心極限定理,假定每罐容量服從正態(tài)分布是合理的.現(xiàn)在我們就來討論這個問題.

3、罐裝可樂的容量按標準應(yīng)在350毫升和360毫升之間.它的對立假設(shè)是:稱H0為原假設(shè)(或零假設(shè),解消假設(shè));稱H1為備選假設(shè)(或?qū)α⒓僭O(shè)).在實際工作中,往往把不輕易否定的命題作為原假設(shè).H0:(=355)H1:這樣,我們可以認為X1,…,X5是取自正態(tài)總體的樣本,是一個常數(shù).當生產(chǎn)比較穩(wěn)定時,現(xiàn)在要檢驗的假設(shè)是:那么,如何判斷原假設(shè)H0是否成立呢?較大、較小是一個相對的概念,合理的界限在何處?應(yīng)由什么原則來確定?由于是正態(tài)分布的期望值,它的估計量是樣本均值,因此可以根據(jù)與的差距來判斷H0是否成立.-

4、

5、較小時,可以認為H0是成立的;當-

6、

7、生產(chǎn)已不正常.當較大時,應(yīng)認

8、為H0不成立,即-

9、

10、問題歸結(jié)為對差異作定量的分析,以確定其性質(zhì).差異可能是由抽樣的隨機性引起的,稱為“抽樣誤差”或隨機誤差這種誤差反映偶然、非本質(zhì)的因素所引起的隨機波動.然而,這種隨機性的波動是有一定限度的,如果差異超過了這個限度,則我們就不能用抽樣的隨機性來解釋了.必須認為這個差異反映了事物的本質(zhì)差別,即反映了生產(chǎn)已不正常.這種差異稱作“系統(tǒng)誤差”問題是,根據(jù)所觀察到的差異,如何判斷它究竟是由于偶然性在起作用,還是生產(chǎn)確實不正常?即差異是“抽樣誤差”還是“系統(tǒng)誤差”所引起的?這里需要給出一個量的界限.問題是:如何給出這個量的界限?這里用到人們在實踐中普遍采用的一個

11、原則:小概率事件在一次試驗中基本上不會發(fā)生.下面我們用一例說明這個原則.小概率事件在一次試驗中基本上不會發(fā)生.這里有兩個盒子,各裝有100個球.一盒中的白球和紅球數(shù)99個紅球一個白球…99個另一盒中的白球和紅球數(shù)99個白球一個紅球…99個小概率事件在一次試驗中基本上不會發(fā)生.現(xiàn)從兩盒中隨機取出一個盒子,問這個盒子里是白球99個還是紅球99個?小概率事件在一次試驗中基本上不會發(fā)生.我們不妨先假設(shè):這個盒子里有99個白球.現(xiàn)在我們從中隨機摸出一個球,發(fā)現(xiàn)是此時你如何判斷這個假設(shè)是否成立呢?假設(shè)其中真有99個白球,摸出紅球的概率只有1/100,這是小概率事件.這個例子中所使

12、用的推理方法,可以稱為小概率事件在一次試驗中竟然發(fā)生了,不能不使人懷疑所作的假設(shè).帶概率性質(zhì)的反證法不妨稱為概率反證法.小概率事件在一次試驗中基本上不會發(fā)生.它不同于一般的反證法概率反證法的邏輯是:如果小概率事件在一次試驗中居然發(fā)生,我們就以很大的把握否定原假設(shè).一般的反證法要求在原假設(shè)成立的條件下導出的結(jié)論是絕對成立的,如果事實與之矛盾,則完全絕對地否定原假設(shè).請看紅樓夢中的擲骰子現(xiàn)在回到我們前面罐裝可樂的例中:在提出原假設(shè)H0后,如何作出接受和拒絕H0的結(jié)論呢?在假設(shè)檢驗中,我們稱這個小概率為顯著性水平,用表示.常取的選擇要根據(jù)實際情況而定。罐裝可樂的容量按標準應(yīng)

13、在350毫升和360毫升之間.一批可樂出廠前應(yīng)進行抽樣檢查,現(xiàn)抽查了n罐,測得容量為X1,X2,…,Xn,問這一批可樂的容量是否合格?提出假設(shè)選檢驗統(tǒng)計量~N(0,1)H0:=355H1:≠355由于已知,它能衡量差異大小且分布已知.對給定的顯著性水平,可以在N(0,1)表中查到分位點的值,使故我們可以取拒絕域為:也就是說,“”是一個小概率事件.W:如果由樣本值算得該統(tǒng)計量的實測值落入?yún)^(qū)域W,則拒絕H0;否則,不能拒絕H0.如果H0是對的,那么衡量差異大小的某個統(tǒng)計量落入?yún)^(qū)域W(拒絕域)是個小概率事件.如果該統(tǒng)計量的實測值落入W,也就是說,H0成立下

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。