資源描述:
《基于馬爾科夫修正的潛油泵灰色振動(dòng)預(yù)測(cè)模型.pdf》由會(huì)員上傳分享,免費(fèi)在線(xiàn)閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、石油機(jī)械-——84-——CHINAPETROLEUMMACHINERY2013年第41卷第3期.一油氣田開(kāi)發(fā)工程基于馬爾科夫修正的潛油泵灰色振動(dòng)預(yù)測(cè)模型正野李建蘭康樂(lè)劉(華中科技大學(xué)能源與動(dòng)力工程學(xué)院)摘要:針對(duì)潛油泵振動(dòng)狀態(tài)數(shù)據(jù)具有波動(dòng)性的問(wèn)題,建立了基于馬爾科夫方法對(duì)灰色預(yù)測(cè)結(jié)果修正的預(yù)測(cè)模型。首先利用灰色等維新息GM(1,1)模型對(duì)樣本數(shù)據(jù)進(jìn)行灰色預(yù)測(cè),然后根據(jù)狀態(tài)實(shí)測(cè)數(shù)據(jù)與其灰色預(yù)測(cè)結(jié)果之間的誤差百分比劃分馬爾科夫狀態(tài)區(qū)間,建立馬爾科夫狀態(tài)轉(zhuǎn)移概率矩陣。用馬爾科夫狀態(tài)轉(zhuǎn)移概率矩陣和當(dāng)前狀
2、態(tài)的誤差百分比狀態(tài)向量計(jì)算得到馬爾科夫修正值,對(duì)灰色預(yù)測(cè)結(jié)果進(jìn)行修正,實(shí)現(xiàn)對(duì)設(shè)備波動(dòng)狀態(tài)參數(shù)的預(yù)測(cè)。潛油泵振動(dòng)狀態(tài)數(shù)據(jù)的預(yù)測(cè)結(jié)果表明,基于馬爾科夫修正的灰色預(yù)測(cè)模型不僅比馬爾科夫預(yù)測(cè)模型和灰色預(yù)測(cè)模型具有更高的預(yù)測(cè)精度,而且對(duì)波動(dòng)數(shù)據(jù)的變化趨勢(shì)具有更高的靈敏度,能夠及時(shí)反映波動(dòng)的變化,從而提高了預(yù)測(cè)精度。關(guān)鍵詞:潛油泵;波動(dòng)數(shù)據(jù);灰色預(yù)測(cè);等維新息GM(1,1)模型;馬爾科夫狀態(tài)轉(zhuǎn)移概率矩陣中圖分類(lèi)號(hào):TE355.5文獻(xiàn)標(biāo)識(shí)碼:Adoi:10.3969/j.issn.1001—4578.2013
3、.03.020Mark念ovCorrection-basedGreyPredictionModelforSubmersiblePumpVibrationYanYeLiJianlanKangLeLiuNian(SchoolofEnergyandPowerEngineering,HuazhongUniversityofScience&Techn0logy)Abstract:Inlightofthefluctuationwiththevibrationstatedataofsubmersiblepum
4、pthepredictionm0de1was,establishedwhichisusedtocorrectthegreypredictionresultonthebasisoftheMark0vmeth0d.First.theGM(1.1)modelofgreyequaldimensionandnewinformationwasadoptedtoconductagreyDrediction0fsampledata·Then,accordingtotheerrorpercentagebetwee
5、nstatemeasurementdataandgreypredictionresuIt.theMark—OVstateintervalsweredividedandtheMarkovstatetransitionprobabilitymatrixwasestablished.Thestatevect0r0ftheerorpercentagebetweenthematrixandthecurrentstatewasappliedtocalculateandobtaintheMarkovc0rre
6、c—tedvaluewhichwasusedtocorrectthegreypredictionresultinordertoachievetheprediction0ffluctuatingstateparametersofequipment.Thepredictionresultofthefluctuatingstateofsubmersiblepumpsh0wsthattheMark0vcorrection。basedgreypredictionmodelhasahigherpredict
7、ionprecisionthanthatoftheMark0vDredicti0nmode1andthegreypredictionmode1.Moreoverithasahighersensitivitytothevariationtendencv0ffluctuationdata,.ItcanreflectthechangeoffluctuationontimeandthusimprovethepredictionDrecisi0n.Keywords:submersiblepump;fluc
8、tuationdata;greyprediction;GM(1,modelofequaldimensionandnewinformation;Markovstatetransitionprobabilitymatrix中挖掘其變化規(guī)律,對(duì)潛在的故障隱患進(jìn)行預(yù)報(bào),0引言為合理安排維修計(jì)劃提供技術(shù)支持,從而保證設(shè)備的安全運(yùn)行。預(yù)測(cè)技術(shù)可以從設(shè)備歷史狀態(tài)參數(shù)的發(fā)展趨勢(shì)近年來(lái),國(guó)內(nèi)外許多學(xué)者對(duì)設(shè)備的故障預(yù)測(cè)進(jìn)基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目“非線(xiàn)性旋轉(zhuǎn)機(jī)械轉(zhuǎn)子系統(tǒng)的突變故障預(yù)測(cè)研究”(50975105)。