資源描述:
《數(shù)學人教版九年級上冊公式法解方程式.ppt》由會員上傳分享,免費在線閱讀,更多相關內容在教育資源-天天文庫。
1、21.2解一元二次方程第1課時配方法、公式法1.直接開平方降次法根據(jù)平方根的定義,把一個一元二次方程______,轉化為________一元一次方程,這種方法可解形如(x-a)2=b(b≥0)的方程,其解為____________.降次兩個注意:用直接開平方法求一元二次方程的解的類型有:x2=a(a≥0);ax2=b(a,b同號,且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同號,且a≠0).2.配方法通過配成________________來解一元二次方程的方法叫做配方法.配方是為了________,把一個一元二次方程轉化為_______
2、___________來解.注意:配方法的一般步驟:①把常數(shù)項移到等號的右邊;②把二次項的系數(shù)化為1;③等式兩邊同時加上一次項系數(shù)一半的平方.完全平方形式降次兩個一元一次方程3.公式法探究:已知ax2+bx+c=0(a≠0),且Δ=b2-4ac≥0,試證明它的兩個根為證明:移項,得ax2+bx=-c()←常數(shù)項移到右邊↓直接開平方,得()←把上式左邊寫成完全平方式↓()0←判斷等式右邊的符號↓,↓≥↓原命題得證.歸納:由上可知,(1)一元二次方程ax2+bx+c=0(a≠0)的根是由方程的a,b,c而定;(2)式子x=叫做一元二次方程的求根公式;(3)利用求根
3、公式解一元二次方程的方法叫公式法;(4)由求根公式可知,一元二次方程最多有兩個實數(shù)根.注意:采用公式法時首先要將方程化簡為一般式.4.一元二次方程根的判別式由根的判別式________________的值可以直接去判斷方程根的個數(shù)情況,而不用求解方程:當Δ=b2-4ac>0時,方程__________________________;當Δ=b2-4ac=0時,方程__________________________;當Δ=b2-4ac<0時,方程__________________________.有兩個相等的實數(shù)根沒有實數(shù)根Δ=b2-4ac有兩個不相等的實數(shù)
4、根知識點1直接開平方降次法【例1】用直接開平方降次法解下列方程:(1)3x2-1=5;(2)4(x-1)2-9=0;(3)4x2+16x+16=9.思路點撥:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)解:(1)3x2-1=5可化成x2=2,【跟蹤訓練】)C1.一元二次方程x2-3=0的根為(A.x=3B.x=3D.x1=3,x2=-32.用直接開平方降次法解下列方程:(1)x2-16=0;(2)(x-2)2=5.解:(1)x2-16=0,即x2=16.∴x1=4,x2=-4.知識點2配方法(重難點)【例2】用配方法解下列方程:(1)x2+6x+5
5、=0;(2)2x2+6x-2=0;(3)(1+x)2+2(x+1)-4=0.思路點撥:用配方法解一元二次方程的一般步驟:(1)化二次項系數(shù)為1;(2)移項,使方程左邊為二次項和一次項,右邊為常數(shù)項;(3)配方,方程兩邊都加上一次項系數(shù)一半的平方;(4)將方程變?yōu)?x+m)2=n的形式;(5)用直接開平方降次法解變形后的方程(如果右邊是非負數(shù),就可以直接開平方求出方程的解,如果右邊是負數(shù),則一元二次方程無解).解:(1)移項,得x2+6x=-5.配方,得x2+6x+32=-5+32,即(x+3)2=4.兩邊開平方,得x+3=±2,即x1=-1,x2=-5.(2)
6、移項,得2x2+6x=2.二次項系數(shù)化為1,得x2+3x=1.(3)去括號整理,得x2+4x-1=0.移項,得x2+4x=1,配方,得(x+2)2=5.【跟蹤訓練】3.(2011年甘肅蘭州)用配方法解方程x2-2x-5=0時,原)C方程應變形為(A.(x+1)2=6C.(x-1)2=6B.(x+2)2=9D.(x-2)2=94.用配方法解方程:(1)x2-4x-3=0;(2)4x2-7x-2=0.解:(1)移項,得x2-4x=3.配方,得x2-4x+4=3+4,知識點3公式法(重點)【例3】用公式法解下列方程.(1)2x2-4x-1=0;(3)(x-2)(3x
7、-5)=1;(2)5x+2=3x2;(4)4x2-x+1=0.思路點撥:運用公式法解一元二次方程時要注意:(1)方程要化為一般形式;(2)確定系數(shù)時要包含各項前面的符號;(3)先確定判別式的符號再將其代入求根公式.解:(1)a=2,b=-4,c=-1,b2-4ac=(-4)2-4×2×(-1)=24>0,(2)將方程化為一般形式3x2-5x-2=0,a=3,b=-5,c=-2,b2-4ac=(-5)2-4×3×(-2)=49>0,(3)將方程化為一般形式3x2-11x+9=0,a=3,b=-11,c=9,b2-4ac=(-11)2-4×3×9=13>0,因為在
8、實數(shù)范圍內,負數(shù)不能開平方,所以原方程