資源描述:
《中位數(shù)和眾數(shù)教學(xué)設(shè)計(jì)(一)》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、20.1.2中位數(shù)和眾數(shù)(一)教學(xué)目標(biāo)知識(shí)與技能1、認(rèn)識(shí)中位數(shù)和眾數(shù),并會(huì)求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們?cè)趯?shí)際問題中分析并做出決策。3、會(huì)利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。過程與方法經(jīng)歷探索中位數(shù)、眾數(shù)的概念的過程,學(xué)會(huì)根據(jù)數(shù)據(jù)做出總體的初步的思想、合理論證,領(lǐng)會(huì)平均數(shù)、中位數(shù)、眾數(shù)的特征數(shù)的聯(lián)系和區(qū)別。情感態(tài)度與價(jià)值觀培養(yǎng)學(xué)生良好的數(shù)字信息處理的意識(shí),建立學(xué)好數(shù)學(xué)的自信心,體會(huì)發(fā)展的內(nèi)涵與價(jià)值。重點(diǎn)認(rèn)識(shí)中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表難點(diǎn)利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。
2、教學(xué)過程備注教學(xué)設(shè)計(jì)與師生互動(dòng)第一步:課前引入:前面已經(jīng)和同學(xué)們研究過了平均數(shù)的這個(gè)數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔(dān)當(dāng)了重要的角色,今天我們來共同研究和認(rèn)識(shí)數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們?cè)诜治鰯?shù)據(jù)過程中又起到怎樣的作用。請(qǐng)同學(xué)們看下面問題: NO1、 一家鞋店在一段時(shí)間內(nèi)銷售了某種女鞋30雙,其中各種尺碼的鞋的銷售量如下表所示:鞋的尺碼(單位:厘米)2222.52323.52424.525銷售量(單位:雙)12511731在這個(gè)問題里,鞋店比較關(guān)心的是哪種尺碼的鞋銷售得最多.師引導(dǎo)學(xué)生觀察表格,并思考表格反映的是多少個(gè)數(shù)據(jù)的全體.(NO2、在一次
3、數(shù)學(xué)競(jìng)賽中,5名學(xué)生的成績從低分到高分排列慶次是: ?5557616298 教師引導(dǎo)學(xué)生觀察在這5個(gè)數(shù)據(jù)中,前4個(gè)數(shù)據(jù)的大小比較接近,最后1個(gè)數(shù)據(jù)與它們的差異較大.這時(shí)如果用其中最中間的數(shù)據(jù)61來描述這組數(shù)據(jù)的集中趨勢(shì),可以不受個(gè)別數(shù)據(jù)較大變動(dòng)的影響第二步;講授新課:一、總結(jié)概念:眾數(shù)的定義:在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).中位數(shù)定義:將一組數(shù)據(jù)按大小依次排列,把處在最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。二、求中位數(shù)與眾數(shù)和步驟:求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到小)排列,⑵數(shù)清數(shù)據(jù)個(gè)數(shù)是奇數(shù)還
4、是偶數(shù),如果數(shù)據(jù)個(gè)數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個(gè)數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的那個(gè)數(shù)據(jù),若幾個(gè)數(shù)據(jù)頻數(shù)都是最多且相同,此時(shí)眾數(shù)就是這多個(gè)數(shù)據(jù)。三、中位數(shù)和眾數(shù)意義和作用:中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動(dòng)對(duì)中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),可用中位數(shù)描述其趨勢(shì)。眾數(shù)是當(dāng)一組數(shù)據(jù)中某一重復(fù)出現(xiàn)次數(shù)較多時(shí),人們往往關(guān)心的一個(gè)量,眾數(shù)不受極端值的影響,這是它的一個(gè)優(yōu)勢(shì),中位數(shù)的計(jì)算很少不受極端值的影響。第三步:應(yīng)用舉例:例110名工人某天生產(chǎn)同一零售,生產(chǎn)的件數(shù)是
5、: 15 17 14 10 15 19 17 16 14 12 求這一天10名工人生產(chǎn)的零件的中位數(shù). 教師引導(dǎo)學(xué)生觀察分析后,讓學(xué)生自解. 解:將10個(gè)數(shù)據(jù)按從小到大的順序排列,得到: 10 12 14 14 15 15 16 17 17 19 左右最中間的兩個(gè)數(shù)據(jù)都是15,它們的平均數(shù)是15,即這組數(shù)據(jù)的中位數(shù)是15(件). 答:這一天10人生產(chǎn)的零件的中位數(shù)是15件. 例2在一次中學(xué)生田徑運(yùn)動(dòng)會(huì)上,參加男子跳高的17名運(yùn)動(dòng)員的成 績?nèi)缦卤硭荆撼煽?單位:米)1.501.601.651.701.751.801.851.90人數(shù)2323
6、4111分別求這些運(yùn)動(dòng)員成績的眾數(shù),中位數(shù)與平均數(shù)(平均數(shù)的計(jì)算結(jié)果保留到小數(shù)點(diǎn)后第 2位)例3:某班四個(gè)小組的人數(shù)如下:10,10,x,8,已知這組數(shù)據(jù)的中位數(shù)與平均數(shù)相等,求這組數(shù)據(jù)的中位數(shù)。 分析:根據(jù)求平均數(shù)公式可列出該數(shù)據(jù)組的平均數(shù)為(10+10+x+8),中位數(shù)要先從小到大排列后才可求出,又不知道x的大小,就要分情況討論,然后列方程求解?! 〗猓浩骄鶖?shù):=?。?)當(dāng)x≤8時(shí),原數(shù)據(jù)按從小到大排列為:x,8,10,10,其中位數(shù)為=9 若=9,則x=8 ∴此時(shí)中位數(shù)為9?。?)當(dāng)87、位數(shù)為 若=,則x=8,不在88、120、120、210、150求這15個(gè)銷售員該月銷