灰色預測模型gm

灰色預測模型gm

ID:27844018

大小:424.00 KB

頁數(shù):11頁

時間:2018-12-06

灰色預測模型gm_第1頁
灰色預測模型gm_第2頁
灰色預測模型gm_第3頁
灰色預測模型gm_第4頁
灰色預測模型gm_第5頁
資源描述:

《灰色預測模型gm》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在教育資源-天天文庫。

1、-灰色預測模型GM(1,1)§1預備知識平面上有數(shù)據(jù)序列,大致分布在一條直線上。yx設回歸直線為:,要使所有點到直線的距離之和最?。ㄗ钚《耍?,即使誤差平方和最小。J是關于a,b的二元函數(shù)。由則得使J取極小的必要條件為:(*)(1)以上是我們熟悉的最小二乘計算過程。下面提一種觀點,上述算法,本質(zhì)上是用實際觀測數(shù)據(jù)、去表示a與b,使得誤差平方和J取最小值,即從近似方程中形式上解出a與b。把上式寫成矩陣方程。令,.---令,則左乘得注意到BTB是二階方陣,且其行列式不為零,故其逆陣(BTB)-1存在,所以上式左乘得(2)可以具體驗算按最小二乘法求得的結果(1)與(2)式完全相同,下面把兩種算法統(tǒng)一

2、一下:由最小二乘得結果:方程(*)方程組改寫為:令:,,(*)化為所以以后,只要數(shù)據(jù)列大致成直線,既有近似表達式當令:,,則有(2).---(2)式就是最小二乘結果,即按最小二乘法求出的回歸直線的回歸系數(shù)a與b。推廣:多元線性回歸設有m個變量,每個自變量有n個值,因變量y有n個值(1)如n個人,每人有m個指標。女生:人:(體重)公斤(胸圍)厘米(呼吸差)厘米(肺活量)毫升1=35=69=0.716002=40=74=2.526003=40=64=2.021004=42=74=326505=37=72=10124006=45=68=10522007=43=78=40327508=37=66=21

3、6009=44=70=302275010=42=65=32500方程組(1)是n個方程m個數(shù)據(jù)用X表示增廣矩陣:n行,m+1列,,其中為階矩陣。由此可解出:注意:方程組中不知,意思是:如果線性關系成立.---當為多少時,到的距離之和為最小?;蛘f,當所有到()距離之和為最小時的就是我們要求的最佳系數(shù)。§2GM模型前言為什么要講GM(1,1)模型?80年代初,華中理工大學鄧聚龍教授提出了灰色系統(tǒng)理論,先后發(fā)表過灰色控制、灰色預測、灰色決策、灰色系統(tǒng)理論等多部專著,較詳細在闡述了灰色系統(tǒng)理論的產(chǎn)生、理論、方法與應用。在80年代中后期到90年代初,舉行了十數(shù)次國際、國內(nèi)有關灰色系統(tǒng)理論的研討會,在全國

4、形成一股灰色系統(tǒng)理論研究與應用熱潮。鄧聚龍先生因灰色系統(tǒng)理論方面的供獻,獲得國家科技進步一等獎。~什么叫灰?用鄧先生自己的話來講:“完全已知的系統(tǒng)稱作白系統(tǒng);完全未知的系統(tǒng)稱作黑系統(tǒng)或黑箱;部分已知、部分未知的系統(tǒng)稱作灰色系統(tǒng)?!痹诖?,已知或未知到什么程度沒有具體說明。所以,“灰”的內(nèi)涵不是很清楚。舉個例子講,已知某量的真值x在閉區(qū)間[a,b]上,不可能落在[a,b]之外,但具體落到區(qū)間[a,b]的什么位置則是完全不知道的。那么,這個量稱作灰量,可具體表示為[a,b],稱其為區(qū)間灰數(shù)。顯然,區(qū)間灰數(shù)是客觀實際中存在的,除了知道真值x在[a,b]上,而不在[a,b]之外,不再有任何已知信息,這就

5、是灰量的最基本原型。由于灰色系統(tǒng)理論從一開始就沒有建立在嚴格的集合論基礎之上,使之缺乏必要的數(shù)學支撐,這大大限制了灰色系統(tǒng)理論和應用的發(fā)展。雖然灰色系統(tǒng)理論在控制、預測、決策等領域有著廣泛的應用;但就其精華而言,還在于GM(1,1)模型。即便是現(xiàn)在,在特定情況下,GM(1,1)還有用,還在被應用,并且預測效果很好。其使用限制條件是:原始數(shù)據(jù)單調(diào),預測背景呈現(xiàn)穩(wěn)定發(fā)展趨勢;其優(yōu)勢是:適用于原始觀測數(shù)據(jù)較少的預測問題,由于數(shù)據(jù)量很小,無法應用概率統(tǒng)計方法尋找統(tǒng)計規(guī)律,而GM(1,1)模型恰恰彌補了這個空白,由于GM(1,1)算法簡單易行,預測精度相對較高,所以在一些特定問題中,GM(1,1)仍然是

6、決策者樂于選擇的預測模型。上面講到的背景穩(wěn)定的發(fā)展趨勢是指下述情況:如化工設備的腐蝕量,隨著使用時間的推移腐蝕不斷增加,呈現(xiàn)出穩(wěn)定的發(fā)展趨勢,并且腐蝕量的測量通常比較困難(如停產(chǎn)才能測量),所以實際觀測數(shù)據(jù)較少。這類問題很適合GM(1,1)模型預測?!?GM(1,1)預備知識3.1回憶一階線性常系數(shù)微分方程(1)其解為:(2)其中a,u為給定的常數(shù)。.---一階線性常系數(shù)微分方程(1)的解(2)是指數(shù)型曲線,如下圖所示x(0)0txa<0a>0x(0)–u/a0txa<0a>010txa<0a>0圖象圖象圖象3.2在預備知識中,講述了最小二乘法:若數(shù)據(jù)點近似落在一條直線上,設這條直線為y=ax

7、+b,a,b為參數(shù)。理想的直線要求:每個數(shù)據(jù)點,到該直線的距離平方和最小――即最小二乘。用最小二乘法求出參數(shù)a與b,這相當于形式上的解線性方程組:(3)當令,,則(3)化為,(4)由此求出,可得回歸直線(5)上述形式上的求解結果,本質(zhì)上是用最小二乘法求解回歸參數(shù)的過程,故有下面結論。結論:一組數(shù)據(jù)點(n個),且近似線性關系則下述表達式可求出回歸系數(shù)a與b。.---上述形式上的計算,本質(zhì)是使點到直線

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。