資源描述:
《數(shù)學(xué)建模對力學(xué)教學(xué)與實踐的影響》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、數(shù)學(xué)建模對力學(xué)教學(xué)與實踐的影響 摘要:數(shù)學(xué)建模不僅是數(shù)學(xué)走向力學(xué)應(yīng)用的必經(jīng)之路,而且也是科學(xué)思維建立的基礎(chǔ)。通過數(shù)學(xué)建模分析力學(xué)問題,將數(shù)學(xué)應(yīng)用于力學(xué)實踐,親歷發(fā)現(xiàn)和創(chuàng)造的過程,不斷深化科學(xué)思維,有利于培養(yǎng)學(xué)生的創(chuàng)新意識和實踐能力。數(shù)學(xué)建模對力學(xué)教學(xué)具有重要的指導(dǎo)作用,然而,學(xué)生對數(shù)學(xué)建模缺乏全面的理解,因此教師在力學(xué)教學(xué)過程中應(yīng)強(qiáng)調(diào)數(shù)學(xué)建?;纠砟?,特別是要重視思維的培養(yǎng),聯(lián)系實際力學(xué)問題培養(yǎng)學(xué)生創(chuàng)新能力?! £P(guān)鍵詞:數(shù)學(xué)建模;力學(xué)實踐;科學(xué)思維;創(chuàng)新能力 數(shù)學(xué)模型是解決各種實際問題的過程,是將數(shù)學(xué)應(yīng)用于力學(xué)等現(xiàn)代自然科學(xué)的重要橋梁。數(shù)學(xué)建模不僅是數(shù)學(xué)走向力學(xué)應(yīng)用的必
2、經(jīng)之路,而且也是科學(xué)思維建立的基礎(chǔ)。通過數(shù)學(xué)建模分析力學(xué)問題,將數(shù)學(xué)應(yīng)用于實際的嘗試,親歷發(fā)現(xiàn)和創(chuàng)造的過程,可以取得在課堂里和書本上無法獲得的寶貴經(jīng)驗和親身感受,不斷深化科學(xué)思維,培養(yǎng)學(xué)生的創(chuàng)新意識和實踐能力。數(shù)學(xué)建模對力學(xué)教學(xué)思維的建立具有重要的指導(dǎo)作用。 一、數(shù)學(xué)建模與數(shù)學(xué)建模教學(xué)的發(fā)展5 數(shù)學(xué)建模最早出現(xiàn)于公元前3世紀(jì),歐幾里得所寫的《幾何原本》為現(xiàn)實世界的空間形式構(gòu)建了數(shù)學(xué)模型。可以說,數(shù)學(xué)模型與數(shù)學(xué)是同時產(chǎn)生的。數(shù)學(xué)建模的發(fā)展貫穿近代力學(xué)的發(fā)展過程,兩者互相促進(jìn),相互推動。開普勒總結(jié)的行星運動三大規(guī)律、牛頓的萬有引力公式、電動力學(xué)中的Maxwell方程、流體力
3、學(xué)中的Navier-Stokes方程與Euler方程以及量子力學(xué)中的Schrodinger方程等等,無不是經(jīng)典的數(shù)學(xué)建模?! ?985年,美國開始舉辦國際大學(xué)生數(shù)學(xué)建模競賽,至此數(shù)學(xué)建模的教育開始引起廣泛的重視。數(shù)學(xué)建模在我國興起并被廣泛使用是近三十年的事。從1982年起我國開設(shè)“數(shù)學(xué)建?!闭n程,1992年起舉辦全國大學(xué)生數(shù)學(xué)建模競賽,現(xiàn)在已經(jīng)成為我國高校規(guī)模最大的課外科技活動。2002年,開展“將數(shù)學(xué)建模的思想與方法融入數(shù)學(xué)類主干課程”的教改實踐,2012年,《數(shù)學(xué)建模及其應(yīng)用》雜志創(chuàng)辦?! 《?、數(shù)學(xué)建模對力學(xué)教學(xué)的指導(dǎo)作用 1.數(shù)學(xué)建模是將數(shù)學(xué)應(yīng)用于力學(xué)實踐的必要過程
4、 數(shù)學(xué)建模(MathematicalModeling)是通過對實際問題的抽象、簡化,建立起變量和參數(shù)間的數(shù)學(xué)模型,求解該數(shù)學(xué)問題并驗證解,從而確定能否用于解決問題多次循環(huán)、不斷深化的過程。數(shù)學(xué)模型(MathematicalModel)是指為了一個特定目的,對于一個現(xiàn)實問題,發(fā)掘其內(nèi)在規(guī)律,通過積極主動的思維,提出適當(dāng)?shù)募僭O(shè),運用數(shù)學(xué)工具得到的一個數(shù)學(xué)結(jié)構(gòu)。 數(shù)學(xué)建模幾乎是一切應(yīng)用科學(xué)的基礎(chǔ),用數(shù)學(xué)來解決的實際問題,都是通過數(shù)學(xué)建模的過程來進(jìn)行的。而力學(xué)是應(yīng)用科學(xué)的一個重要分支,一種力學(xué)理論往往和相應(yīng)的一個數(shù)學(xué)分支相伴產(chǎn)生,如:運動基本定律和微積分,運動方程的求解和常微分
5、方程,彈性力學(xué)及流體力學(xué)和數(shù)學(xué)分析理論,天體力學(xué)中運動穩(wěn)定性和微分方程定性理論等。因此,有人甚至認(rèn)為力學(xué)應(yīng)該也是一門應(yīng)用數(shù)學(xué)?! ?.數(shù)學(xué)建模是培養(yǎng)科學(xué)思維的基礎(chǔ)5 科學(xué)思維是以科學(xué)知識為基礎(chǔ)的科學(xué)化、最優(yōu)化的思維,是科學(xué)家適應(yīng)現(xiàn)代實踐活動方式和現(xiàn)代科技革命而創(chuàng)立的方法體系??茖W(xué)思維的其他重要研究者Dunbar立足心理學(xué)視角指出,科學(xué)思維過程是建構(gòu)理論、實驗設(shè)計、假設(shè)檢驗、數(shù)據(jù)解釋和科學(xué)發(fā)現(xiàn)等階段中的認(rèn)知過程。這個過程與數(shù)學(xué)建模完全吻合,因此數(shù)學(xué)建模是培養(yǎng)科學(xué)思維的基礎(chǔ)。 許多的力學(xué)家同時也是數(shù)學(xué)家,他們在力學(xué)研究工作中總是善于從復(fù)雜的現(xiàn)象中洞察問題本質(zhì),又能尋找合適的
6、解決問題的數(shù)學(xué)模型,逐漸形成一套特有的思維與方法。數(shù)學(xué)建模不單單是對某個問題或是某類問題的研究和解決,更重要的是一種思維的培養(yǎng)。科學(xué)思維的培養(yǎng)是科學(xué)素養(yǎng)的重要組成,是科學(xué)教學(xué)的核心內(nèi)容?! ?.數(shù)學(xué)建模對培養(yǎng)學(xué)生的創(chuàng)新能力具有重要作用 數(shù)學(xué)建模是一個分析問題和解決實際問題的過程,從數(shù)學(xué)理論到應(yīng)用數(shù)學(xué),再到應(yīng)用科學(xué),它為培養(yǎng)學(xué)生從實踐到理論再從理論回到實踐的能力,創(chuàng)造了十分有利的條件。數(shù)學(xué)建模的過程是一個不斷探索的過程,因此,數(shù)學(xué)建模競賽是培養(yǎng)學(xué)生綜合能力和發(fā)揮創(chuàng)新能力的有效途徑。 創(chuàng)新可以是前所未有的創(chuàng)造,也可以是在原有基礎(chǔ)上的發(fā)展改進(jìn),即包含創(chuàng)造、改造和重組等意思。數(shù)
7、學(xué)模型來源于錯綜復(fù)雜的客觀實際,沒有現(xiàn)成的答案和固定的模式,因此學(xué)生在建立和求解這類模型時,從貌似不同的問題中抓住其本質(zhì),常常需要打破常規(guī)、突破傳統(tǒng)??梢哉f,培養(yǎng)學(xué)生的創(chuàng)造能力始終貫穿在數(shù)學(xué)建模的整個過程。在數(shù)學(xué)建模的過程中體現(xiàn)了知識的創(chuàng)新、方法的創(chuàng)新、結(jié)果的創(chuàng)新和應(yīng)用的創(chuàng)新?! ∪?、數(shù)學(xué)建模在力學(xué)教學(xué)中的現(xiàn)狀5 數(shù)學(xué)建模教育在我國取得了長足的發(fā)展,越來越多的本科、??坪透呗殞W(xué)院開設(shè)了數(shù)學(xué)建模課程,但普及率并不高,并且大部分學(xué)校只針對特殊專業(yè)開設(shè),如中南大學(xué)物理升華班,湖南師范大學(xué)數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)等?! ≡趯W(xué)習(xí)