資源描述:
《復(fù)合函數(shù)與反函數(shù)》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、§1.3復(fù)合函數(shù)與反函數(shù)一、復(fù)合函數(shù)y=sinu,y=sin(x2+1)u=x2+1y=sin(x2+1)y=sinu,u=x2+1是由復(fù)合而成的復(fù)合函數(shù)。u中間變量或者說y=sin(x2+1)y=sinu與u=x2+1是的復(fù)合函數(shù)。設(shè)函數(shù)z=f(y)定義在數(shù)集B上,函數(shù)y=?(x)定義在數(shù)集A上,G是A中使y=?(x)?B的x的非空子集,即定義G={x
2、x?A,?(x)?B}≠??x?G,按照對應(yīng)關(guān)系?,對應(yīng)唯一一個y?B,再按照對應(yīng)關(guān)系f對應(yīng)唯一一個z?R.這樣,對?x?G,都有唯一的z與之對應(yīng)。xy=?(x)?fz=f(y)=f[?(x)]于是在G上定義了一個函數(shù)h,表
3、為f?,稱為函數(shù)y=?(x)與z=f(y)的復(fù)合函數(shù)。即:h(x)=(f?)(x)=f[?(x)]x?Gy中間變量z=lny,y=1+exz=ln(1+ex)可推廣到若干個函數(shù)構(gòu)成的復(fù)合函數(shù):y=lnu,u=1+ev,v=sinxy=ln(1+esinx)中間變量u,v**(1)一般地,對兩個函數(shù)f、g,有fg≠gf(2)對任意函數(shù)f、g、h,有(fg)h=f(gh)例1.函數(shù)是由哪些函數(shù)復(fù)合而成的?解:以上過程稱為對復(fù)合函數(shù)的分解**例2.已知:求:解:二、反函數(shù)已給函數(shù)y=ln(x3+1)f:xln(x3+1)=y對任意的x?(-1,+?),對應(yīng)唯一一個y。反之,給定一個
4、y?(-?,+?),通過上述的對應(yīng)關(guān)系,也對應(yīng)唯一一個x:yx=(ey–1)1/3稱為函數(shù)y=ln(x3+1)的反函數(shù)。這個對應(yīng)關(guān)系確定了(-?,+?)上的一個函數(shù)。定義不是每一個函數(shù)都有反函數(shù)。**什么函數(shù)才有反函數(shù)?對應(yīng)關(guān)系是一一對應(yīng)的函數(shù)才會有反函數(shù)。函數(shù)y=x2在區(qū)間(-?,+?)上沒有反函數(shù)函數(shù)y=x2在區(qū)間(0,+?)上有反函數(shù)函數(shù)y=x2在區(qū)間(-?,0)上有反函數(shù)(略)單調(diào)函數(shù)有反函數(shù)。例。求函數(shù)y=ex+1的反函數(shù)解:y=ex+1ex=y-1x=ln(y-1)(1)函數(shù)y=f(x)與函數(shù)x=f-1(y)互為反函數(shù)。**(2)函數(shù)y=f(x)的反函數(shù)x=f-1
5、(y)一般記為y=f-1(x)如:函數(shù)y=ex+1的反函數(shù)為y=ln(x-1)(3)函數(shù)y=f(x)與函數(shù)y=f-1(x)的圖象關(guān)于直線y=x對稱。M(a,b)M’(b,a)三、初等函數(shù)1?;境醯群瘮?shù)以下六種簡單函數(shù)稱為基本初等函數(shù)(1)常數(shù)函數(shù)y=C(C為常數(shù))(2)冪函數(shù)y=x?(??R為常數(shù))(3)指數(shù)函數(shù)y=ax(a>0,a?1)(4)對數(shù)函數(shù)y=logax(a>0,a?1)(5)三角函數(shù)y=sinxy=cosxy=tanxy=cotxy=secxy=cscx(6)反三角函數(shù)y=arcsinxy=arccosy=arctanxy=arccotxy=arcsecxy=
6、arccscx對每一個基本初等函數(shù),要了解它們的定義域、性質(zhì)、圖象。2。初等函數(shù)由基本初等函數(shù)經(jīng)過有限次四則運算和復(fù)合運算而成的函數(shù),稱為初等函數(shù)。都是初等函數(shù).都不是初等函數(shù)都是初等函數(shù)雙曲函數(shù)雙曲正弦雙曲余弦雙曲正切雙曲余切雙曲正割雙曲余割