一院一專業(yè)《數(shù)理方程》復(fù)習(xí)匯總

一院一專業(yè)《數(shù)理方程》復(fù)習(xí)匯總

ID:5810856

大小:66.83 KB

頁(yè)數(shù):14頁(yè)

時(shí)間:2017-12-25

一院一專業(yè)《數(shù)理方程》復(fù)習(xí)匯總_第1頁(yè)
一院一專業(yè)《數(shù)理方程》復(fù)習(xí)匯總_第2頁(yè)
一院一專業(yè)《數(shù)理方程》復(fù)習(xí)匯總_第3頁(yè)
一院一專業(yè)《數(shù)理方程》復(fù)習(xí)匯總_第4頁(yè)
一院一專業(yè)《數(shù)理方程》復(fù)習(xí)匯總_第5頁(yè)
資源描述:

《一院一專業(yè)《數(shù)理方程》復(fù)習(xí)匯總》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在應(yīng)用文檔-天天文庫(kù)

1、2012年3月一院一專業(yè)《數(shù)理方程》復(fù)習(xí)匯總及考點(diǎn)分析根據(jù)王澤軍老師授課中提到的要點(diǎn)及此次考試中的重點(diǎn)進(jìn)行分析??键c(diǎn)分析主要以第二章(分離變量法)和第三章(行波法與積分變換法)為準(zhǔn),其余章節(jié)望后來(lái)者添加補(bǔ)充。一、分離變量法1.波動(dòng)方程以下分別對(duì)波動(dòng)方程的四種振動(dòng)方式進(jìn)行概述,其中對(duì)形式I進(jìn)行詳述,其他形式類推。形式Iutt=a2uxx00u0,t=0,ul,t=0t>0u(x,0)=φx,utx,0=ψx,0≤x≤l.將u(x,t)中的x,t分離出來(lái),其形式為:ux,t=XxT(t)式中X(x),T(t)分別表示僅與x,t有關(guān)的待定函數(shù)。由ux,t=XxT(t)得XxTt=a2X

2、(x)T(t)X''(x)X(x)=T''(t)a2T(t)=-λX''x+λXx=0T''t+λa2Tt=0由邊界條件知X(0)=X(l)=0已知λ≤0時(shí)沒(méi)有非零解當(dāng)λ>0時(shí)Xx=Acosλx+Bsinλx由初值可知λ=nπl(wèi)(n=1,2,3…)Xnx,t=Bnsinnπl(wèi)x(n=1,2,3…)再將λ代入T(t)中得Tnt=C'ncosnπalt+D'nsinnπaltunx,t=Ancosnπalt+Bnsinnπaltsinnπl(wèi)xux,t=n=1∞un=n=1∞Ancosnπalt+Bnsinnπaltsinnπl(wèi)x代入初值得An=2lolφxsinnπl(wèi)xdxnπalBn=2lolψ

3、xsinnπl(wèi)xdx解得An,Bn后代入所設(shè)函數(shù)中即可求得關(guān)于ux,t的定解問(wèn)題。形式IIutt=a2uxx00ux0,t=0,uxl,t=0t>0u(x,0)=φx,utx,0=ψx,0≤x≤l.由邊界條件(紅色標(biāo)出字體)可確定其特征函數(shù)系為cosnπl(wèi)x,故可設(shè)ux,t=n=0注意n=0的取值∞Ancosnπalt+Bnsinnπaltcosnπl(wèi)x或直接設(shè)為ux,t=a02將n=0的情況單獨(dú)提出進(jìn)行計(jì)算,a0=2l0lφxdx+n=1∞Ancosnπalt+Bnsinnπaltcosnπl(wèi)x其中An=2lolφxcosnπl(wèi)xdxnπalBn=2lolψxcosnπl(wèi)xdx

4、解得An,Bn后代入所設(shè)函數(shù)中即可求得關(guān)于ux,t的定解問(wèn)題。形式IIIutt=a2uxx00u0,t=0,uxl,t=0t>0u(x,0)=φx,utx,0=ψx,0≤x≤l.由邊界條件可確定其特征函數(shù)系為sin(2n+1)2l注意函數(shù)系取(2n+1)π2lx,故可設(shè)ux,t=n=0∞Ancos(2n+1)πa2lt+Bnsin(2n+1)πa2ltsinnπl(wèi)(2n+1)π2lx其中An=2lolφxsin(2n+1)π2lxdx(2n+1)π2lBn=2lolψxsin(2n+1)π2lxdx解得An,Bn后代入所設(shè)函數(shù)中即可求得關(guān)于ux,t的定解問(wèn)題。形式IVutt=a2

5、uxx00ux0,t=0,ul,t=0t>0u(x,0)=φx,utx,0=ψx,0≤x≤l.由邊界條件(紅色字體標(biāo)出)可確定其特征函數(shù)系為cos(2n+1)2lx,故可設(shè)ux,t=n=0∞Ancos(2n+1)πa2lt+Bnsin(2n+1)πa2ltcosnπl(wèi)(2n+1)π2lx其中An=2lolφxcos(2n+1)π2lxdx(2n+1)π2lBn=2lolψxcos(2n+1)π2lxdx解得An,Bn后代入所設(shè)函數(shù)中即可求得關(guān)于ux,t的定解問(wèn)題。1.熱傳導(dǎo)方程同波動(dòng)方程的分析相似,我們也分四種形式進(jìn)行討論。形式Iut=a2uxx00u0,t=0,u

6、l,t=0t>0u(x,0)=φx,0≤x≤l.由邊界條件(紅色字體標(biāo)出)可確定其特征函數(shù)系為sinnπl(wèi)x,故可設(shè)ux,t=n=1∞Cne-(nπal)2tsinnπl(wèi)x其中Cn=2lolφxsinnπl(wèi)xdx解得Cn后代入所設(shè)函數(shù)中即可求得關(guān)于ux,t的定解問(wèn)題。形式IIut=a2uxx00ux0,t=0,uxl,t=0t>0u(x,0)=φx,0≤x≤l.由邊界條件可確定其特征函數(shù)系為cosnπl(wèi)x,故可設(shè)ux,t=n=0∞Cne-(nπal)2tcosnπl(wèi)x或直接寫成ux,t=a02+n=1∞Cne-(nπal)2tcosnπl(wèi)x其中Cn=2lolφxcosnπl(wèi)xdx

7、解得Cn后代入所設(shè)函數(shù)中即可求得關(guān)于ux,t的定解問(wèn)題。形式IIIut=a2uxx00u0,t=0,uxl,t=0t>0u(x,0)=φx,0≤x≤l.由邊界條件可確定其特征函數(shù)系為sin(2n+1)π2lx,故可設(shè)ux,t=n=0∞Cne-((2n+1)πa2l)2tsin(2n+1)π2lx其中Cn=2lolφxsin(2n+1)π2lxdx解得Cn后代入所設(shè)函數(shù)中即可求得關(guān)于u

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。