資源描述:
《排列組合復(fù)習(xí)課-解排列組合問(wèn)題的常用技巧課件.ppt》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。
1、知識(shí)復(fù)習(xí)+梳理解排列組合問(wèn)題的常用方法完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法,…,在第n類辦法中有mn種不同的方法,那么完成這件事共有:種不同的方法.復(fù)習(xí)鞏固1.分類計(jì)數(shù)原理(加法原理)完成一件事,需要分成n個(gè)步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法,…,做第n步有mn種不同的方法,那么完成這件事共有:種不同的方法.2.分步計(jì)數(shù)原理(乘法原理)分步計(jì)數(shù)原理各步相互依存,每步中的方法完成事件的一個(gè)階段,不能完成整個(gè)事件.3.分類計(jì)數(shù)原理分步計(jì)數(shù)
2、原理區(qū)別分類計(jì)數(shù)原理方法相互獨(dú)立,任何一種方法都可以獨(dú)立地完成這件事。復(fù)習(xí)回顧排列數(shù)從n個(gè)不同元素中取出m(m≤n)個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.從nm個(gè)元素的排列數(shù)。n個(gè)不同元素中取出叫做從所有排列的個(gè)數(shù),個(gè)元素的個(gè)不同元素中取出m(m≤n)排列排列數(shù)公式!mn-)!n=(我們規(guī)定:0!=1復(fù)習(xí)回顧組合數(shù)從n個(gè)不同元素中取出m(m≤n)個(gè)元素,并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合.從nm個(gè)元素的組合數(shù)。n個(gè)不同元素中取出叫做從所有組合的個(gè)數(shù),個(gè)元
3、素的個(gè)不同元素中取出m(m≤n)組合組合數(shù)公式和兩個(gè)重要性質(zhì)解決實(shí)際問(wèn)題時(shí)首先要看是否與順序有關(guān),從而確定是排列問(wèn)題還是組合問(wèn)題,必要時(shí)要利用分類和分步計(jì)數(shù)原理.強(qiáng)調(diào):排列——次序性;組合——無(wú)序性.在處理問(wèn)題時(shí),一般可采用直接和間接兩種思維形式,從而尋求有效的解題途徑.解決排列組合綜合性問(wèn)題的一般過(guò)程如下:1.認(rèn)真審題弄清要做什么事2.怎樣做才能完成所要做的事,即采取分步還是分類,或是分步與分類同時(shí)進(jìn)行,確定分多少步及多少類。3.確定每一步或每一類是排列問(wèn)題(有序)還是組合(無(wú)序)問(wèn)題,元素總數(shù)是多少及取出多少
4、個(gè)元素.※解決排列組合綜合性問(wèn)題,往往類與步交叉,因此必須掌握一些常用的解題策略,以下來(lái)講解這些常用策略一.特殊元素和特殊位置優(yōu)先策略(優(yōu)先法)例1.由0,1,2,3,4,5可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字五位奇數(shù).解:由于末位和首位有特殊要求,應(yīng)該優(yōu)先安排,以免不合要求的元素占了這兩個(gè)位置先排末位共有___然后排首位共有___最后排其它位置共有___由分步計(jì)數(shù)原理得=288位置分析法和元素分析法是解決排列組合問(wèn)題最常用也是最基本的方法,若以元素分析為主,需先安排特殊元素,再處理其它元素.若以位置分析為主,需先滿足特殊
5、位置的要求,再處理其它位置。若有多個(gè)約束條件,往往是考慮一個(gè)約束條件的同時(shí)還要兼顧其它條件二.相鄰元素捆綁策略(捆綁法)例2.7人站成一排,其中甲乙相鄰且丙丁相鄰,共有多少種不同的排法.甲乙丙丁由分步計(jì)數(shù)原理可得共有種不同的排法=480解:可先將甲乙兩元素捆綁成整體并看成一個(gè)復(fù)合元素,同時(shí)丙丁也看成一個(gè)復(fù)合元素,再與其它元素進(jìn)行排列,同時(shí)對(duì)相鄰元素內(nèi)部進(jìn)行自排。要求某幾個(gè)元素必須排在一起的問(wèn)題,可以用捆綁法來(lái)解決問(wèn)題.即將需要相鄰的元素合并為一個(gè)元素,再與其它元素一起作排列,同時(shí)要注意合并元素內(nèi)部也必須排列.三.
6、不相鄰問(wèn)題插空策略(插空法)例3.一個(gè)晚會(huì)的節(jié)目有4個(gè)舞蹈,2個(gè)相聲,3個(gè)獨(dú)唱,舞蹈節(jié)目不能連續(xù)出場(chǎng),則節(jié)目的出場(chǎng)順序有多少種?解:分兩步進(jìn)行第一步排2個(gè)相聲和3個(gè)獨(dú)唱共有種,第二步將4舞蹈插入第一步排好的5個(gè)元素中間包含首尾兩個(gè)空位共有種不同的方法由分步計(jì)數(shù)原理,節(jié)目的不同順序共有種相相獨(dú)獨(dú)獨(dú)元素相離問(wèn)題可先把沒(méi)有位置要求的元素進(jìn)行排隊(duì)再把不相鄰元素插入中間和兩端四.重排問(wèn)題求冪策略例4.把6名實(shí)習(xí)生分配到7個(gè)車間實(shí)習(xí),共有多少種不同的分法解:完成此事共分六步:把第一名實(shí)習(xí)生分配到車間有種分法.7把第二名實(shí)習(xí)生
7、分配到車間也有7種分法,依此類推,由分步計(jì)數(shù)原理共有種不同的排法允許重復(fù)的排列問(wèn)題的特點(diǎn)是以元素為研究對(duì)象,元素不受位置的約束,可以逐一安排各個(gè)元素的位置,一般地n不同的元素沒(méi)有限制地安排在m個(gè)位置上的排列數(shù)為種nm五.多排問(wèn)題直排策略例5.8人排成前后兩排,每排4人,其中甲乙在前排,丁在后排,共有多少排法解:8人排前后兩排,相當(dāng)于8人坐8把椅子,可以把椅子排成一排.先在前4個(gè)位置排甲乙兩個(gè)特殊元素有____種,再排后4個(gè)位置上的特殊元素有_____種,其余的5人在5個(gè)位置上任意排列有____種,則共有_____
8、____種.前排后排一般地,元素分成多排的排列問(wèn)題,可歸結(jié)為一排考慮,再分段研究.六.排列組合混合問(wèn)題先選后排策略例6.有5個(gè)不同的小球,裝入4個(gè)不同的盒內(nèi),每盒至少裝一個(gè)球,共有多少不同的裝法.解:第一步從5個(gè)球中選出2個(gè)組成復(fù)合元共有__種方法.再把5個(gè)元素(包含一個(gè)復(fù)合元素)裝入4個(gè)不同的盒內(nèi)有_____種方法.根據(jù)分步計(jì)數(shù)原理裝球的方法共有_____解決排列組合混